近几十年来极地涡旋的减弱及其对地表温度的影响

IF 1.9 4区 地球科学 Q3 ECOLOGY
Seong-Joong Kim, Hyesun Choi
{"title":"近几十年来极地涡旋的减弱及其对地表温度的影响","authors":"Seong-Joong Kim, Hyesun Choi","doi":"10.33265/polar.v43.9723","DOIUrl":null,"url":null,"abstract":"<p>The stratospheric polar vortex (SPV) weakening is linked to surface circulation changes. This study employs statistical analysis using reanalysis data to compare the anomalous SPV behaviour in the Northern (NH) and Southern (SH) hemispheres and its downward impacts on surface climate. The onset of annual SPV weakening occurs in mid-January and late September in the NH and SH hemispheres, respectively. Following the onset of SPV weakening, stratospheric polar cap height (PCH) anomalies were strongly correlated with tropospheric PCH anomalies. Significant cold anomalies were observed over Eurasia within 30 days after SPV weakening onset in the NH, whereas warming responses occurred in the SH 30–60 days after onset over Antarctica, except in the Antarctic Peninsula. These contrasting surface temperature responses to SPV weakening events in both hemispheres are the results of changes in the geopotential height in the troposphere, reminiscent of the change in geopotential height in the lower stratosphere, with a trough over Eurasia in the NH, and a higher height anomaly over East Antarctica in the SH. SPV changes have played a role in modulating surface climate via a downward influence on tropospheric circulation in recent decades. Even though they show a weakening trend in both hemispheres, SPV changes cannot fully explain long-term temperature trends. This is partially because SPV trends observed during the analysis period are relatively weak. This study enhances our understanding of the characteristics of the SPV coupled with troposphere circulation and can contribute to improved surface weather forecasting.</p>","PeriodicalId":49684,"journal":{"name":"Polar Research","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polar vortex weakening and its impact on surface temperature in recent decades\",\"authors\":\"Seong-Joong Kim, Hyesun Choi\",\"doi\":\"10.33265/polar.v43.9723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The stratospheric polar vortex (SPV) weakening is linked to surface circulation changes. This study employs statistical analysis using reanalysis data to compare the anomalous SPV behaviour in the Northern (NH) and Southern (SH) hemispheres and its downward impacts on surface climate. The onset of annual SPV weakening occurs in mid-January and late September in the NH and SH hemispheres, respectively. Following the onset of SPV weakening, stratospheric polar cap height (PCH) anomalies were strongly correlated with tropospheric PCH anomalies. Significant cold anomalies were observed over Eurasia within 30 days after SPV weakening onset in the NH, whereas warming responses occurred in the SH 30–60 days after onset over Antarctica, except in the Antarctic Peninsula. These contrasting surface temperature responses to SPV weakening events in both hemispheres are the results of changes in the geopotential height in the troposphere, reminiscent of the change in geopotential height in the lower stratosphere, with a trough over Eurasia in the NH, and a higher height anomaly over East Antarctica in the SH. SPV changes have played a role in modulating surface climate via a downward influence on tropospheric circulation in recent decades. Even though they show a weakening trend in both hemispheres, SPV changes cannot fully explain long-term temperature trends. This is partially because SPV trends observed during the analysis period are relatively weak. This study enhances our understanding of the characteristics of the SPV coupled with troposphere circulation and can contribute to improved surface weather forecasting.</p>\",\"PeriodicalId\":49684,\"journal\":{\"name\":\"Polar Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.33265/polar.v43.9723\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33265/polar.v43.9723","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

平流层极地涡旋(SPV)的减弱与地表环流变化有关。本研究利用再分析数据进行统计分析,比较了北半球(NH)和南半球(SH)极地涡旋的异常表现及其对地表气候的向下影响。在北半球和南半球,每年的 SPV 削弱分别出现在 1 月中旬和 9 月下旬。SPV 开始减弱后,平流层极冠高度(PCH)异常与对流层极冠高度异常密切相关。在北半球SPV减弱开始后30天内,欧亚大陆上空出现了明显的低温异常,而在南半球SPV减弱开始后30-60天内,除南极半岛外,南极洲上空出现了升温反应。两个半球的地表温度对 SPV 减弱事件的反应截然不同,这是对流层中位势高度变化的结果,与低平流层中位势高度的变化相似,北半球的欧亚大陆上空出现低谷,而南半球的南极洲东部上空则出现较高的高度异常。近几十年来,SPV 的变化通过对流层环流的向下影响,在调节地表气候方面发挥了作用。尽管 SPV 变化在两个半球都呈现减弱趋势,但 SPV 变化并不能完全解释长期气温趋势。部分原因是在分析期间观测到的 SPV 趋势相对较弱。这项研究加深了我们对 SPV 与对流层环流耦合特征的理解,有助于改进地面天气预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polar vortex weakening and its impact on surface temperature in recent decades

The stratospheric polar vortex (SPV) weakening is linked to surface circulation changes. This study employs statistical analysis using reanalysis data to compare the anomalous SPV behaviour in the Northern (NH) and Southern (SH) hemispheres and its downward impacts on surface climate. The onset of annual SPV weakening occurs in mid-January and late September in the NH and SH hemispheres, respectively. Following the onset of SPV weakening, stratospheric polar cap height (PCH) anomalies were strongly correlated with tropospheric PCH anomalies. Significant cold anomalies were observed over Eurasia within 30 days after SPV weakening onset in the NH, whereas warming responses occurred in the SH 30–60 days after onset over Antarctica, except in the Antarctic Peninsula. These contrasting surface temperature responses to SPV weakening events in both hemispheres are the results of changes in the geopotential height in the troposphere, reminiscent of the change in geopotential height in the lower stratosphere, with a trough over Eurasia in the NH, and a higher height anomaly over East Antarctica in the SH. SPV changes have played a role in modulating surface climate via a downward influence on tropospheric circulation in recent decades. Even though they show a weakening trend in both hemispheres, SPV changes cannot fully explain long-term temperature trends. This is partially because SPV trends observed during the analysis period are relatively weak. This study enhances our understanding of the characteristics of the SPV coupled with troposphere circulation and can contribute to improved surface weather forecasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polar Research
Polar Research 地学-地球科学综合
CiteScore
3.20
自引率
5.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Since 1982, Polar Research has been the international, peer-reviewed journal of the Norwegian Polar Institute, Norway''s central institution for research, environmental monitoring and mapping of the polar regions. Aiming to promote the exchange of scientific knowledge about the Arctic and Antarctic across disciplinary boundaries, Polar Research serves an international community of researchers and managers. As an open-access journal, Polar Research makes its contents freely available to the general public. Original primary research papers comprise the mainstay of Polar Research. Review articles, brief research notes, letters to the editor and book reviews are also included. Special issues are published from time to time. The scope of Polar Research encompasses research in all scientific disciplines relevant to the polar regions. These include, but are not limited to, the subfields of biology, ecology, geology, oceanography, glaciology and atmospheric science. Submissions from the social sciences and those focusing on polar management and policy issues are welcome. Contributions about Antarctica are particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信