基于费雪线性判别分析的聚类验证

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Fabian Kächele, Nora Schneider
{"title":"基于费雪线性判别分析的聚类验证","authors":"Fabian Kächele, Nora Schneider","doi":"10.1007/s00357-024-09481-3","DOIUrl":null,"url":null,"abstract":"<p>Cluster analysis aims to find meaningful groups, called clusters, in data. The objects within a cluster should be similar to each other and dissimilar to objects from other clusters. The fundamental question arising is whether found clusters are “valid clusters” or not. Existing cluster validity indices are computation-intensive, make assumptions about the underlying cluster structure, or cannot detect the absence of clusters. Thus, we present a new cluster validation framework to assess the validity of a clustering and determine the underlying number of clusters <span>\\(k^*\\)</span>. Within the framework, we introduce a new merge criterion analyzing the data in a one-dimensional projection, which maximizes the ratio of between-cluster- variance to within-cluster-variance in the clusters. Nonetheless, other local methods can be applied as a merge criterion within the framework. Experiments on synthetic and real-world data sets show promising results for both the overall framework and the introduced merge criterion.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Validation Based on Fisher’s Linear Discriminant Analysis\",\"authors\":\"Fabian Kächele, Nora Schneider\",\"doi\":\"10.1007/s00357-024-09481-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cluster analysis aims to find meaningful groups, called clusters, in data. The objects within a cluster should be similar to each other and dissimilar to objects from other clusters. The fundamental question arising is whether found clusters are “valid clusters” or not. Existing cluster validity indices are computation-intensive, make assumptions about the underlying cluster structure, or cannot detect the absence of clusters. Thus, we present a new cluster validation framework to assess the validity of a clustering and determine the underlying number of clusters <span>\\\\(k^*\\\\)</span>. Within the framework, we introduce a new merge criterion analyzing the data in a one-dimensional projection, which maximizes the ratio of between-cluster- variance to within-cluster-variance in the clusters. Nonetheless, other local methods can be applied as a merge criterion within the framework. Experiments on synthetic and real-world data sets show promising results for both the overall framework and the introduced merge criterion.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-024-09481-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09481-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析的目的是在数据中找到有意义的群体,即聚类。一个聚类中的对象应该彼此相似,而与其他聚类中的对象不相似。由此产生的基本问题是,找到的聚类是否是 "有效聚类"。现有的聚类有效性指数需要大量计算,对潜在的聚类结构进行假设,或者无法检测到聚类的缺失。因此,我们提出了一个新的聚类验证框架来评估聚类的有效性,并确定聚类的基本数量 \(k^*\)。在这个框架内,我们引入了一个新的合并标准,以一维投影的方式分析数据,使聚类中的聚类间方差与聚类内方差之比最大化。不过,其他局部方法也可以作为合并标准应用于该框架中。在合成数据集和实际数据集上进行的实验表明,整体框架和引入的合并标准都取得了可喜的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cluster Validation Based on Fisher’s Linear Discriminant Analysis

Cluster Validation Based on Fisher’s Linear Discriminant Analysis

Cluster analysis aims to find meaningful groups, called clusters, in data. The objects within a cluster should be similar to each other and dissimilar to objects from other clusters. The fundamental question arising is whether found clusters are “valid clusters” or not. Existing cluster validity indices are computation-intensive, make assumptions about the underlying cluster structure, or cannot detect the absence of clusters. Thus, we present a new cluster validation framework to assess the validity of a clustering and determine the underlying number of clusters \(k^*\). Within the framework, we introduce a new merge criterion analyzing the data in a one-dimensional projection, which maximizes the ratio of between-cluster- variance to within-cluster-variance in the clusters. Nonetheless, other local methods can be applied as a merge criterion within the framework. Experiments on synthetic and real-world data sets show promising results for both the overall framework and the introduced merge criterion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信