(G,n)复数的取消与天鹅有限性障碍

Pub Date : 2024-07-03 DOI:10.1093/imrn/rnae141
John Nicholson
{"title":"(G,n)复数的取消与天鹅有限性障碍","authors":"John Nicholson","doi":"10.1093/imrn/rnae141","DOIUrl":null,"url":null,"abstract":"In previous work, we related homotopy types of finite $(G,n)$-complexes when $G$ has periodic cohomology to projective ${\\mathbb{Z}} G$-modules representing the Swan finiteness obstruction. We use this to determine when $X \\vee S^{n} \\simeq Y \\vee S^{n}$ implies $X \\simeq Y$ for finite $(G,n)$-complexes $X$ and $Y$, and give lower bounds on the number of homotopically distinct pairs when this fails. The proof involves constructing projective ${\\mathbb{Z}} G$-modules as lifts of locally free modules over orders in products of quaternion algebras, whose existence follows from the Eichler mass formula. In the case $n=2$, difficulties arise that lead to a new approach to finding a counterexample to Wall’s D2 problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancellation for (G,n)-complexes and the Swan Finiteness Obstruction\",\"authors\":\"John Nicholson\",\"doi\":\"10.1093/imrn/rnae141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work, we related homotopy types of finite $(G,n)$-complexes when $G$ has periodic cohomology to projective ${\\\\mathbb{Z}} G$-modules representing the Swan finiteness obstruction. We use this to determine when $X \\\\vee S^{n} \\\\simeq Y \\\\vee S^{n}$ implies $X \\\\simeq Y$ for finite $(G,n)$-complexes $X$ and $Y$, and give lower bounds on the number of homotopically distinct pairs when this fails. The proof involves constructing projective ${\\\\mathbb{Z}} G$-modules as lifts of locally free modules over orders in products of quaternion algebras, whose existence follows from the Eichler mass formula. In the case $n=2$, difficulties arise that lead to a new approach to finding a counterexample to Wall’s D2 problem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在之前的工作中,我们将$G$具有周期同调时有限$(G,n)$复数的同调类型与代表斯旺有限性障碍的投影${/mathbb{Z}}相关联。代表斯旺有限性障碍的 G$ 模块。我们利用这一点来确定当 $X \vee S^{n}\simeq Y \vee S^{n}$ 对于有限的 $(G,n)$ 复数 $X$ 和 $Y$,意味着 $X \simeq Y$,并给出了当这种情况失效时同源不同对的数量下限。证明涉及构造投影 ${mathbb{Z}}G$ 模块作为四元数代数乘积阶上局部自由模块的提升,其存在性源于艾希勒质量公式。在 $n=2$ 的情况下,会出现一些困难,从而导致一种新的方法来寻找沃尔 D2 问题的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cancellation for (G,n)-complexes and the Swan Finiteness Obstruction
In previous work, we related homotopy types of finite $(G,n)$-complexes when $G$ has periodic cohomology to projective ${\mathbb{Z}} G$-modules representing the Swan finiteness obstruction. We use this to determine when $X \vee S^{n} \simeq Y \vee S^{n}$ implies $X \simeq Y$ for finite $(G,n)$-complexes $X$ and $Y$, and give lower bounds on the number of homotopically distinct pairs when this fails. The proof involves constructing projective ${\mathbb{Z}} G$-modules as lifts of locally free modules over orders in products of quaternion algebras, whose existence follows from the Eichler mass formula. In the case $n=2$, difficulties arise that lead to a new approach to finding a counterexample to Wall’s D2 problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信