{"title":"关于柳维尔函数的哥德巴赫问题","authors":"Alexander P Mangerel","doi":"10.1093/imrn/rnae149","DOIUrl":null,"url":null,"abstract":"Let $\\lambda $ denote the Liouville function. We show that for all $N \\geq 11$, the (non-trivial) convolution sum bound $$ \\begin{align*} & \\left|\\sum_{n < N} \\lambda(n) \\lambda(N-n)\\right| < N-1 \\end{align*} $$ holds. We also determine all $N$ for which no cancellation in the convolution sum occurs. This answers a question posed at the 2018 AIM workshop on Sarnak’s conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Goldbach-Type Problem for the Liouville Function\",\"authors\":\"Alexander P Mangerel\",\"doi\":\"10.1093/imrn/rnae149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\lambda $ denote the Liouville function. We show that for all $N \\\\geq 11$, the (non-trivial) convolution sum bound $$ \\\\begin{align*} & \\\\left|\\\\sum_{n < N} \\\\lambda(n) \\\\lambda(N-n)\\\\right| < N-1 \\\\end{align*} $$ holds. We also determine all $N$ for which no cancellation in the convolution sum occurs. This answers a question posed at the 2018 AIM workshop on Sarnak’s conjecture.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a Goldbach-Type Problem for the Liouville Function
Let $\lambda $ denote the Liouville function. We show that for all $N \geq 11$, the (non-trivial) convolution sum bound $$ \begin{align*} & \left|\sum_{n < N} \lambda(n) \lambda(N-n)\right| < N-1 \end{align*} $$ holds. We also determine all $N$ for which no cancellation in the convolution sum occurs. This answers a question posed at the 2018 AIM workshop on Sarnak’s conjecture.