{"title":"无穷大时的独特延续:一般翘曲圆柱体上的卡勒曼估计值","authors":"Nicolò De Ponti, Stefano Pigola, Giona Veronelli","doi":"10.1093/imrn/rnae147","DOIUrl":null,"url":null,"abstract":"We obtain a vanishing result for solutions of the inequality $|\\Delta u| \\leq q_{1} |u| + q_{2} |\\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_{1}$ and $q_{2}$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"39 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique Continuation at Infinity: Carleman Estimates on General Warped Cylinders\",\"authors\":\"Nicolò De Ponti, Stefano Pigola, Giona Veronelli\",\"doi\":\"10.1093/imrn/rnae147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a vanishing result for solutions of the inequality $|\\\\Delta u| \\\\leq q_{1} |u| + q_{2} |\\\\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_{1}$ and $q_{2}$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae147\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae147","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Unique Continuation at Infinity: Carleman Estimates on General Warped Cylinders
We obtain a vanishing result for solutions of the inequality $|\Delta u| \leq q_{1} |u| + q_{2} |\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_{1}$ and $q_{2}$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.