{"title":"布仲益气汤治疗胃癌的分子机制:网络药理学、分子对接和体外实验分析","authors":"Panke Zeng, Xinyu Wu, Chen Chen, Jianing Zhang, Haroon ur Rashid, Pengfei Zhang","doi":"10.1002/pep2.24371","DOIUrl":null,"url":null,"abstract":"Gastric cancer (GC) is the most common type of cancer of the digestive system with high morbidity and mortality. Chemotherapy and targeted therapy are used to treat patients with advanced GC. However, side effects and drug resistance to the two modalities remain the main challenges. The Buzhong Yiqi decoction (BZYQD), a classical traditional Chinese medicine formula, has been reported for the treatment of various types of cancers. However, the underlying pharmacological mechanism has not been fully elucidated. Therefore, this study integrated network pharmacology, molecular docking, cancer public databases, and cell experiments to explore the potential bioactive compounds and BZYQD's mechanism of action against GC. A total of 245 targets of BZYQD, 5291 GC‐related targets, and 186 were identified as their common targets through the database. Network analysis confirmed AKT1, TP53, TNF, and EGFR to be the core targets, while the main compounds observed were quercetin, kaempferol, and β‐Sitosterol. The core signaling pathways included PI3K‐AKT, MAPK, TNF, and IL‐17. Molecular docking revealed good binding activity for the main compounds and core targets. Based on the database's validation of core targets, a large number of core genes were verified to be consistent with this study. Quercetin, kaempferol, and β‐Sitosterol were found to significantly reduce the growth of GC cells in the MTT experiment. The current study revealed that BZYQD may inhibit GC progression by interfering with core targets such as AKT1, TP53, TNF, EGFR, and MAPK3, and by regulating the activity of PI3K‐AKT, MAPK, TNF, and IL‐17 signaling pathways.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":"14 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanisms of Buzhong Yiqi Decoction in the Treatment of Gastric Cancer: A Network Pharmacology, Molecular Docking, and In Vitro Experimental Analysis\",\"authors\":\"Panke Zeng, Xinyu Wu, Chen Chen, Jianing Zhang, Haroon ur Rashid, Pengfei Zhang\",\"doi\":\"10.1002/pep2.24371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gastric cancer (GC) is the most common type of cancer of the digestive system with high morbidity and mortality. Chemotherapy and targeted therapy are used to treat patients with advanced GC. However, side effects and drug resistance to the two modalities remain the main challenges. The Buzhong Yiqi decoction (BZYQD), a classical traditional Chinese medicine formula, has been reported for the treatment of various types of cancers. However, the underlying pharmacological mechanism has not been fully elucidated. Therefore, this study integrated network pharmacology, molecular docking, cancer public databases, and cell experiments to explore the potential bioactive compounds and BZYQD's mechanism of action against GC. A total of 245 targets of BZYQD, 5291 GC‐related targets, and 186 were identified as their common targets through the database. Network analysis confirmed AKT1, TP53, TNF, and EGFR to be the core targets, while the main compounds observed were quercetin, kaempferol, and β‐Sitosterol. The core signaling pathways included PI3K‐AKT, MAPK, TNF, and IL‐17. Molecular docking revealed good binding activity for the main compounds and core targets. Based on the database's validation of core targets, a large number of core genes were verified to be consistent with this study. Quercetin, kaempferol, and β‐Sitosterol were found to significantly reduce the growth of GC cells in the MTT experiment. The current study revealed that BZYQD may inhibit GC progression by interfering with core targets such as AKT1, TP53, TNF, EGFR, and MAPK3, and by regulating the activity of PI3K‐AKT, MAPK, TNF, and IL‐17 signaling pathways.\",\"PeriodicalId\":19825,\"journal\":{\"name\":\"Peptide Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptide Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pep2.24371\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptide Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pep2.24371","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular Mechanisms of Buzhong Yiqi Decoction in the Treatment of Gastric Cancer: A Network Pharmacology, Molecular Docking, and In Vitro Experimental Analysis
Gastric cancer (GC) is the most common type of cancer of the digestive system with high morbidity and mortality. Chemotherapy and targeted therapy are used to treat patients with advanced GC. However, side effects and drug resistance to the two modalities remain the main challenges. The Buzhong Yiqi decoction (BZYQD), a classical traditional Chinese medicine formula, has been reported for the treatment of various types of cancers. However, the underlying pharmacological mechanism has not been fully elucidated. Therefore, this study integrated network pharmacology, molecular docking, cancer public databases, and cell experiments to explore the potential bioactive compounds and BZYQD's mechanism of action against GC. A total of 245 targets of BZYQD, 5291 GC‐related targets, and 186 were identified as their common targets through the database. Network analysis confirmed AKT1, TP53, TNF, and EGFR to be the core targets, while the main compounds observed were quercetin, kaempferol, and β‐Sitosterol. The core signaling pathways included PI3K‐AKT, MAPK, TNF, and IL‐17. Molecular docking revealed good binding activity for the main compounds and core targets. Based on the database's validation of core targets, a large number of core genes were verified to be consistent with this study. Quercetin, kaempferol, and β‐Sitosterol were found to significantly reduce the growth of GC cells in the MTT experiment. The current study revealed that BZYQD may inhibit GC progression by interfering with core targets such as AKT1, TP53, TNF, EGFR, and MAPK3, and by regulating the activity of PI3K‐AKT, MAPK, TNF, and IL‐17 signaling pathways.
Peptide ScienceBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
5.20
自引率
4.20%
发文量
36
期刊介绍:
The aim of Peptide Science is to publish significant original research papers and up-to-date reviews covering the entire field of peptide research. Peptide Science provides a forum for papers exploring all aspects of peptide synthesis, materials, structure and bioactivity, including the use of peptides in exploring protein functions and protein-protein interactions. By incorporating both experimental and theoretical studies across the whole spectrum of peptide science, the journal serves the interdisciplinary biochemical, biomaterials, biophysical and biomedical research communities.
Peptide Science is the official journal of the American Peptide Society.