{"title":"耦合薛定谔系统的归一化基态:质量超临界情况","authors":"Louis Jeanjean, Jianjun Zhang, Xuexiu Zhong","doi":"10.1007/s00030-024-00972-1","DOIUrl":null,"url":null,"abstract":"<p>We consider the existence of solutions <span>\\((\\lambda _1,\\lambda _2, u, v)\\in \\mathbb {R}^2\\times (H^1(\\mathbb {R}^N))^2\\)</span> to systems of coupled Schrödinger equations </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u+\\lambda _1 u=\\mu _1 u^{p-1}+\\beta r_1 u^{r_1-1}v^{r_2}&{}\\hbox {in}\\quad \\mathbb {R}^N,\\\\ -\\Delta v+\\lambda _2 v=\\mu _2 v^{q-1}+\\beta r_2 u^{r_1}v^{r_2-1}&{}\\hbox {in}\\quad \\mathbb {R}^N,\\\\ 0<u,v\\in H^1(\\mathbb {R}^N),\\quad 1\\le N\\le 4,&{} \\end{array}\\right. } \\end{aligned}$$</span><p>satisfying the normalization </p><span>$$\\begin{aligned} \\int _{\\mathbb {R}^N}u^2 \\textrm{d}x=a \\quad \\text{ and } \\quad \\int _{\\mathbb {R}^N}v^2 \\textrm{d}x=b. \\end{aligned}$$</span><p>Here <span>\\(\\mu _1,\\mu _2,\\beta >0\\)</span> and the prescribed masses <span>\\(a,b>0\\)</span>. We focus on the coupled purely mass super-critical case, i.e., </p><span>$$\\begin{aligned} 2+\\frac{4}{N}<p,q,r_1+r_2<2^* \\end{aligned}$$</span><p>with <span>\\(2^*=\\frac{2N}{(N-2)_+}, 1\\le N\\le 4\\)</span> and give a partial affirmative answer to one open question in Bartsch et al. (J Math Pures Appl (9), 106(4):583–614, 2016). In particular, for <span>\\(N=3,4\\)</span> with <span>\\(r_1,r_2\\in (1,2)\\)</span>, our result indicates the existence for all <span>\\(a,b>0\\)</span> and <span>\\(\\beta >0\\)</span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized ground states for a coupled Schrödinger system: mass super-critical case\",\"authors\":\"Louis Jeanjean, Jianjun Zhang, Xuexiu Zhong\",\"doi\":\"10.1007/s00030-024-00972-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the existence of solutions <span>\\\\((\\\\lambda _1,\\\\lambda _2, u, v)\\\\in \\\\mathbb {R}^2\\\\times (H^1(\\\\mathbb {R}^N))^2\\\\)</span> to systems of coupled Schrödinger equations </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta u+\\\\lambda _1 u=\\\\mu _1 u^{p-1}+\\\\beta r_1 u^{r_1-1}v^{r_2}&{}\\\\hbox {in}\\\\quad \\\\mathbb {R}^N,\\\\\\\\ -\\\\Delta v+\\\\lambda _2 v=\\\\mu _2 v^{q-1}+\\\\beta r_2 u^{r_1}v^{r_2-1}&{}\\\\hbox {in}\\\\quad \\\\mathbb {R}^N,\\\\\\\\ 0<u,v\\\\in H^1(\\\\mathbb {R}^N),\\\\quad 1\\\\le N\\\\le 4,&{} \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>satisfying the normalization </p><span>$$\\\\begin{aligned} \\\\int _{\\\\mathbb {R}^N}u^2 \\\\textrm{d}x=a \\\\quad \\\\text{ and } \\\\quad \\\\int _{\\\\mathbb {R}^N}v^2 \\\\textrm{d}x=b. \\\\end{aligned}$$</span><p>Here <span>\\\\(\\\\mu _1,\\\\mu _2,\\\\beta >0\\\\)</span> and the prescribed masses <span>\\\\(a,b>0\\\\)</span>. We focus on the coupled purely mass super-critical case, i.e., </p><span>$$\\\\begin{aligned} 2+\\\\frac{4}{N}<p,q,r_1+r_2<2^* \\\\end{aligned}$$</span><p>with <span>\\\\(2^*=\\\\frac{2N}{(N-2)_+}, 1\\\\le N\\\\le 4\\\\)</span> and give a partial affirmative answer to one open question in Bartsch et al. (J Math Pures Appl (9), 106(4):583–614, 2016). In particular, for <span>\\\\(N=3,4\\\\)</span> with <span>\\\\(r_1,r_2\\\\in (1,2)\\\\)</span>, our result indicates the existence for all <span>\\\\(a,b>0\\\\)</span> and <span>\\\\(\\\\beta >0\\\\)</span>.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00972-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00972-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normalized ground states for a coupled Schrödinger system: mass super-critical case
We consider the existence of solutions \((\lambda _1,\lambda _2, u, v)\in \mathbb {R}^2\times (H^1(\mathbb {R}^N))^2\) to systems of coupled Schrödinger equations
with \(2^*=\frac{2N}{(N-2)_+}, 1\le N\le 4\) and give a partial affirmative answer to one open question in Bartsch et al. (J Math Pures Appl (9), 106(4):583–614, 2016). In particular, for \(N=3,4\) with \(r_1,r_2\in (1,2)\), our result indicates the existence for all \(a,b>0\) and \(\beta >0\).