Zulei Xu, Xiaoni Wang, Xiaoyu Liu, Ming Yang, Yixin Liu, Wei Peng, Gang Mu and Zhi-Rong Lin
{"title":"氮化铌纳米线超导对外部磁场响应的尺寸效应","authors":"Zulei Xu, Xiaoni Wang, Xiaoyu Liu, Ming Yang, Yixin Liu, Wei Peng, Gang Mu and Zhi-Rong Lin","doi":"10.1088/1361-6668/ad5b23","DOIUrl":null,"url":null,"abstract":"Reducing the negative impact of magnetic vortex motion is a long-term challenge for superconducting applications. Here, we conduct an in-depth investigation on the response of NbN nanowires on applied magnetic fields with the transverse size down to 10 nm. It is found that the vortex-free state can sustain under field up to 9 T in the sample of this dimension, demonstrating a unique approach to reduce the negative effects of flux motion in applications. Such a conclusion is further confirmed by the vanished flux-low instability velocity. Moreover, the upper critical field of the NbN nanowires reveals clear anisotropic features, which can be interpreted based on the framework of the Ginzburg–Landau model. Our results provide important information for understanding the behavior of nanoscale superconducting materials under magnetic fields, which is significant for the application of superconducting micro/nano devices.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size effect on the response of superconductivity in NbN nanowires to external magnetic field\",\"authors\":\"Zulei Xu, Xiaoni Wang, Xiaoyu Liu, Ming Yang, Yixin Liu, Wei Peng, Gang Mu and Zhi-Rong Lin\",\"doi\":\"10.1088/1361-6668/ad5b23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the negative impact of magnetic vortex motion is a long-term challenge for superconducting applications. Here, we conduct an in-depth investigation on the response of NbN nanowires on applied magnetic fields with the transverse size down to 10 nm. It is found that the vortex-free state can sustain under field up to 9 T in the sample of this dimension, demonstrating a unique approach to reduce the negative effects of flux motion in applications. Such a conclusion is further confirmed by the vanished flux-low instability velocity. Moreover, the upper critical field of the NbN nanowires reveals clear anisotropic features, which can be interpreted based on the framework of the Ginzburg–Landau model. Our results provide important information for understanding the behavior of nanoscale superconducting materials under magnetic fields, which is significant for the application of superconducting micro/nano devices.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad5b23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad5b23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
减少磁涡旋运动的负面影响是超导应用面临的一项长期挑战。在这里,我们深入研究了横向尺寸小至 10 纳米的氮化铌纳米线对外加磁场的响应。研究发现,在这一尺寸的样品中,无涡旋状态可在高达 9 T 的磁场中维持,这展示了一种在应用中减少磁通运动负面影响的独特方法。通量-低不稳定速度的消失进一步证实了这一结论。此外,氮化铌纳米线的上临界场显示出明显的各向异性特征,这可以根据金兹堡-朗道模型框架进行解释。我们的研究结果为理解纳米级超导材料在磁场下的行为提供了重要信息,对超导微/纳米器件的应用具有重要意义。
Size effect on the response of superconductivity in NbN nanowires to external magnetic field
Reducing the negative impact of magnetic vortex motion is a long-term challenge for superconducting applications. Here, we conduct an in-depth investigation on the response of NbN nanowires on applied magnetic fields with the transverse size down to 10 nm. It is found that the vortex-free state can sustain under field up to 9 T in the sample of this dimension, demonstrating a unique approach to reduce the negative effects of flux motion in applications. Such a conclusion is further confirmed by the vanished flux-low instability velocity. Moreover, the upper critical field of the NbN nanowires reveals clear anisotropic features, which can be interpreted based on the framework of the Ginzburg–Landau model. Our results provide important information for understanding the behavior of nanoscale superconducting materials under magnetic fields, which is significant for the application of superconducting micro/nano devices.