矩阵舒伯特变体的卡斯特诺沃-芒福德正则性

Oliver Pechenik, David E Speyer, Anna Weigandt
{"title":"矩阵舒伯特变体的卡斯特诺沃-芒福德正则性","authors":"Oliver Pechenik, David E Speyer, Anna Weigandt","doi":"10.1007/s00029-024-00959-x","DOIUrl":null,"url":null,"abstract":"<p>Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Castelnuovo–Mumford regularity of matrix Schubert varieties\",\"authors\":\"Oliver Pechenik, David E Speyer, Anna Weigandt\",\"doi\":\"10.1007/s00029-024-00959-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00959-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00959-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵舒伯特变种是完整旗变种的舒伯特微积分中出现的仿射变种。我们给出了矩阵舒伯特变的卡斯特诺沃-芒福德正则性公式,回答了珍娜-拉奇戈特(Jenna Rajchgot)的一个问题。我们按照她提出的策略研究格罗内迪克多项式的最高阶同调部分,我们称之为卡斯特诺沃-芒福德多项式。除了正则公式外,我们还得到了所有卡斯特诺沃-蒙福德多项式及其前导项的度数公式,以及两个卡斯特诺沃-蒙福德多项式在标量倍数以内一致时的完整描述。格罗登第克多项式的度数是一种新的置换统计量,我们称之为拉吉哥特指数;我们发展了拉吉哥特指数的性质,并将其与主要指数和弱序联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Castelnuovo–Mumford regularity of matrix Schubert varieties

Castelnuovo–Mumford regularity of matrix Schubert varieties

Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信