{"title":"利用微波成像仪联合估计业务天气预报中的海冰和大气状态","authors":"Alan J. Geer","doi":"10.1002/qj.4797","DOIUrl":null,"url":null,"abstract":"Satellite‐observed microwave radiances provide information on both surface and atmosphere. For operational weather forecasting, information on atmospheric temperature, humidity, cloud, and precipitation is inferred directly using all‐sky radiance data assimilation. In contrast, information on the surface state, such as sea‐surface temperature (SST) and sea‐ice concentration (SIC), is typically provided through third‐party retrieval products. Scientifically, this is a sub‐optimal use of the observations, and practically it has disadvantages such as time delays of more than 48 h. A better solution is to estimate the surface and atmospheric state jointly from the radiance observations. This has not been possible until now, due to incomplete knowledge of the surface state and the radiative transfer that links this to the observed radiances. A new approach based on an empirical state and an empirical sea‐ice surface emissivity model is used here to add sea‐ice state estimation, including SIC, to the European Centre for Medium‐range Weather Forecasts atmospheric data assimilation system. The sea‐ice state is estimated using augmented control variables at the observation locations. The resulting SIC estimates are of good quality and they highlight apparent defects in the existing OCEAN5 sea‐ice analysis. The SIC estimates can also be used to track giant icebergs, which may provide a novel maritime application for passive microwave radiances. Further, the SIC estimates should be suitable for onward use in coupled ocean–atmosphere data assimilation. There is also increased coverage of microwave observations in the proximity of sea ice, leading to improved atmospheric forecasts out to day 4 in the Southern Ocean.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint estimation of sea ice and atmospheric state from microwave imagers in operational weather forecasting\",\"authors\":\"Alan J. Geer\",\"doi\":\"10.1002/qj.4797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite‐observed microwave radiances provide information on both surface and atmosphere. For operational weather forecasting, information on atmospheric temperature, humidity, cloud, and precipitation is inferred directly using all‐sky radiance data assimilation. In contrast, information on the surface state, such as sea‐surface temperature (SST) and sea‐ice concentration (SIC), is typically provided through third‐party retrieval products. Scientifically, this is a sub‐optimal use of the observations, and practically it has disadvantages such as time delays of more than 48 h. A better solution is to estimate the surface and atmospheric state jointly from the radiance observations. This has not been possible until now, due to incomplete knowledge of the surface state and the radiative transfer that links this to the observed radiances. A new approach based on an empirical state and an empirical sea‐ice surface emissivity model is used here to add sea‐ice state estimation, including SIC, to the European Centre for Medium‐range Weather Forecasts atmospheric data assimilation system. The sea‐ice state is estimated using augmented control variables at the observation locations. The resulting SIC estimates are of good quality and they highlight apparent defects in the existing OCEAN5 sea‐ice analysis. The SIC estimates can also be used to track giant icebergs, which may provide a novel maritime application for passive microwave radiances. Further, the SIC estimates should be suitable for onward use in coupled ocean–atmosphere data assimilation. There is also increased coverage of microwave observations in the proximity of sea ice, leading to improved atmospheric forecasts out to day 4 in the Southern Ocean.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4797\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4797","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Joint estimation of sea ice and atmospheric state from microwave imagers in operational weather forecasting
Satellite‐observed microwave radiances provide information on both surface and atmosphere. For operational weather forecasting, information on atmospheric temperature, humidity, cloud, and precipitation is inferred directly using all‐sky radiance data assimilation. In contrast, information on the surface state, such as sea‐surface temperature (SST) and sea‐ice concentration (SIC), is typically provided through third‐party retrieval products. Scientifically, this is a sub‐optimal use of the observations, and practically it has disadvantages such as time delays of more than 48 h. A better solution is to estimate the surface and atmospheric state jointly from the radiance observations. This has not been possible until now, due to incomplete knowledge of the surface state and the radiative transfer that links this to the observed radiances. A new approach based on an empirical state and an empirical sea‐ice surface emissivity model is used here to add sea‐ice state estimation, including SIC, to the European Centre for Medium‐range Weather Forecasts atmospheric data assimilation system. The sea‐ice state is estimated using augmented control variables at the observation locations. The resulting SIC estimates are of good quality and they highlight apparent defects in the existing OCEAN5 sea‐ice analysis. The SIC estimates can also be used to track giant icebergs, which may provide a novel maritime application for passive microwave radiances. Further, the SIC estimates should be suitable for onward use in coupled ocean–atmosphere data assimilation. There is also increased coverage of microwave observations in the proximity of sea ice, leading to improved atmospheric forecasts out to day 4 in the Southern Ocean.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.