关于达朗贝尔方程的协方差:声和光的情况

Francisco Caruso, Vitor Oguri
{"title":"关于达朗贝尔方程的协方差:声和光的情况","authors":"Francisco Caruso, Vitor Oguri","doi":"arxiv-2406.02627","DOIUrl":null,"url":null,"abstract":"The covariance of the d'Alembert equation for acoustic phenomena, described\nby mechanical waves in one or three spatial dimensions, under Galilean\ntransformations, is demonstrated without the need to abandon the hypothesis\nthat time is absolute in Classical Mechanics. This is true only if and only if\nthe phase velocity of sound depends on the velocity of the observer. On the\nother hand, it is also shown that the same d'Alembert equation is covariant\nunder Lorentz transformations if and only if the phase velocity of light does\nnot depend on the observer.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the covariance of the d'Alembert equation: the cases of sound and light\",\"authors\":\"Francisco Caruso, Vitor Oguri\",\"doi\":\"arxiv-2406.02627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The covariance of the d'Alembert equation for acoustic phenomena, described\\nby mechanical waves in one or three spatial dimensions, under Galilean\\ntransformations, is demonstrated without the need to abandon the hypothesis\\nthat time is absolute in Classical Mechanics. This is true only if and only if\\nthe phase velocity of sound depends on the velocity of the observer. On the\\nother hand, it is also shown that the same d'Alembert equation is covariant\\nunder Lorentz transformations if and only if the phase velocity of light does\\nnot depend on the observer.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.02627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在伽利略变换下,用一维或三维空间的机械波描述的声学现象的达朗贝尔方程的协变性得到了证明,而无需放弃时间在经典力学中是绝对的这一假设。只有当且仅当声音的相位速度取决于观察者的速度时,时间才是绝对的。另一方面,我们还证明了同一个达朗贝尔方程在洛伦兹变换下是协变的,前提是光的相位速度不取决于观察者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the covariance of the d'Alembert equation: the cases of sound and light
The covariance of the d'Alembert equation for acoustic phenomena, described by mechanical waves in one or three spatial dimensions, under Galilean transformations, is demonstrated without the need to abandon the hypothesis that time is absolute in Classical Mechanics. This is true only if and only if the phase velocity of sound depends on the velocity of the observer. On the other hand, it is also shown that the same d'Alembert equation is covariant under Lorentz transformations if and only if the phase velocity of light does not depend on the observer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信