{"title":"通过修改内容存储表结构提高基于 ICN 的边缘计算中的计算重用效率","authors":"Atiyeh Javaheri, Ali Bohlooli, Kamal Jamshidi","doi":"10.1007/s00607-024-01312-y","DOIUrl":null,"url":null,"abstract":"<p>In edge computing, repetitive computations are a common occurrence. However, the traditional TCP/IP architecture used in edge computing fails to identify these repetitions, resulting in redundant computations being recomputed by edge resources. To address this issue and enhance the efficiency of edge computing, Information-Centric Networking (ICN)-based edge computing is employed. The ICN architecture leverages its forwarding and naming convention features to recognize repetitive computations and direct them to the appropriate edge resources, thereby promoting “computation reuse”. This approach significantly improves the overall effectiveness of edge computing. In the realm of edge computing, dynamically generated computations often experience prolonged response times. To establish and track connections between input requests and the edge, naming conventions become crucial. By incorporating unique IDs within these naming conventions, each computing request with identical input data is treated as distinct, rendering ICN’s aggregation feature unusable. In this study, we propose a novel approach that modifies the Content Store (CS) table, treating computing requests with the same input data and unique IDs, resulting in identical outcomes, as equivalent. The benefits of this approach include reducing distance and completion time, and increasing hit ratio, as duplicate computations are no longer routed to edge resources or utilized cache. Through simulations, we demonstrate that our method significantly enhances cache reuse compared to the default method with no reuse, achieving an average improvement of over 57%. Furthermore, the speed up ratio of enhancement amounts to 15%. Notably, our method surpasses previous approaches by exhibiting the lowest average completion time, particularly when dealing with lower request frequencies. These findings highlight the efficacy and potential of our proposed method in optimizing edge computing performance.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"34 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing computation reuse efficiency in ICN-based edge computing by modifying content store table structure\",\"authors\":\"Atiyeh Javaheri, Ali Bohlooli, Kamal Jamshidi\",\"doi\":\"10.1007/s00607-024-01312-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In edge computing, repetitive computations are a common occurrence. However, the traditional TCP/IP architecture used in edge computing fails to identify these repetitions, resulting in redundant computations being recomputed by edge resources. To address this issue and enhance the efficiency of edge computing, Information-Centric Networking (ICN)-based edge computing is employed. The ICN architecture leverages its forwarding and naming convention features to recognize repetitive computations and direct them to the appropriate edge resources, thereby promoting “computation reuse”. This approach significantly improves the overall effectiveness of edge computing. In the realm of edge computing, dynamically generated computations often experience prolonged response times. To establish and track connections between input requests and the edge, naming conventions become crucial. By incorporating unique IDs within these naming conventions, each computing request with identical input data is treated as distinct, rendering ICN’s aggregation feature unusable. In this study, we propose a novel approach that modifies the Content Store (CS) table, treating computing requests with the same input data and unique IDs, resulting in identical outcomes, as equivalent. The benefits of this approach include reducing distance and completion time, and increasing hit ratio, as duplicate computations are no longer routed to edge resources or utilized cache. Through simulations, we demonstrate that our method significantly enhances cache reuse compared to the default method with no reuse, achieving an average improvement of over 57%. Furthermore, the speed up ratio of enhancement amounts to 15%. Notably, our method surpasses previous approaches by exhibiting the lowest average completion time, particularly when dealing with lower request frequencies. These findings highlight the efficacy and potential of our proposed method in optimizing edge computing performance.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01312-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01312-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Enhancing computation reuse efficiency in ICN-based edge computing by modifying content store table structure
In edge computing, repetitive computations are a common occurrence. However, the traditional TCP/IP architecture used in edge computing fails to identify these repetitions, resulting in redundant computations being recomputed by edge resources. To address this issue and enhance the efficiency of edge computing, Information-Centric Networking (ICN)-based edge computing is employed. The ICN architecture leverages its forwarding and naming convention features to recognize repetitive computations and direct them to the appropriate edge resources, thereby promoting “computation reuse”. This approach significantly improves the overall effectiveness of edge computing. In the realm of edge computing, dynamically generated computations often experience prolonged response times. To establish and track connections between input requests and the edge, naming conventions become crucial. By incorporating unique IDs within these naming conventions, each computing request with identical input data is treated as distinct, rendering ICN’s aggregation feature unusable. In this study, we propose a novel approach that modifies the Content Store (CS) table, treating computing requests with the same input data and unique IDs, resulting in identical outcomes, as equivalent. The benefits of this approach include reducing distance and completion time, and increasing hit ratio, as duplicate computations are no longer routed to edge resources or utilized cache. Through simulations, we demonstrate that our method significantly enhances cache reuse compared to the default method with no reuse, achieving an average improvement of over 57%. Furthermore, the speed up ratio of enhancement amounts to 15%. Notably, our method surpasses previous approaches by exhibiting the lowest average completion time, particularly when dealing with lower request frequencies. These findings highlight the efficacy and potential of our proposed method in optimizing edge computing performance.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.