具有协变量测量误差的非线性混合效应模型的限阶假设检验

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Yixin Zhang, Wei Liu, Lang Wu
{"title":"具有协变量测量误差的非线性混合效应模型的限阶假设检验","authors":"Yixin Zhang,&nbsp;Wei Liu,&nbsp;Lang Wu","doi":"10.1002/cjs.11812","DOIUrl":null,"url":null,"abstract":"<p>Order-restricted hypothesis testing problems frequently arise in practice, including studies involving regression models for longitudinal data. These tests are known to be more powerful than tests that ignore such restrictions. In this article, we consider order-restricted tests for nonlinear mixed-effects models with measurement errors in time-dependent covariates. We propose to use a multiple imputation method to address measurement errors, since this approach allows us to use existing complete-data methods for order-restricted tests. Some theoretical results are presented. We evaluate our proposed methods via simulation studies that demonstrate they are more powerful than either a competing naive method or a two-step approach to testing hypotheses. We illustrate the use of our proposed approach by analyzing data from an HIV/AIDS study.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order-restricted hypothesis tests for nonlinear mixed-effects models with measurement errors in covariates\",\"authors\":\"Yixin Zhang,&nbsp;Wei Liu,&nbsp;Lang Wu\",\"doi\":\"10.1002/cjs.11812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Order-restricted hypothesis testing problems frequently arise in practice, including studies involving regression models for longitudinal data. These tests are known to be more powerful than tests that ignore such restrictions. In this article, we consider order-restricted tests for nonlinear mixed-effects models with measurement errors in time-dependent covariates. We propose to use a multiple imputation method to address measurement errors, since this approach allows us to use existing complete-data methods for order-restricted tests. Some theoretical results are presented. We evaluate our proposed methods via simulation studies that demonstrate they are more powerful than either a competing naive method or a two-step approach to testing hypotheses. We illustrate the use of our proposed approach by analyzing data from an HIV/AIDS study.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11812\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11812","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在实践中,包括涉及纵向数据回归模型的研究中,经常会出现有序限制的假设检验问题。众所周知,这些检验比忽略此类限制的检验更有效。在本文中,我们将考虑对具有时间协变量测量误差的非线性混合效应模型进行阶次限制检验。我们建议使用多重估算方法来解决测量误差问题,因为这种方法允许我们使用现有的完整数据方法进行阶次限制检验。我们提出了一些理论结果。我们通过模拟研究对我们提出的方法进行了评估,结果表明,这些方法比与之竞争的天真方法或两步假设检验方法更强大。我们通过分析一项艾滋病毒/艾滋病研究的数据来说明我们提出的方法的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Order-restricted hypothesis tests for nonlinear mixed-effects models with measurement errors in covariates

Order-restricted hypothesis testing problems frequently arise in practice, including studies involving regression models for longitudinal data. These tests are known to be more powerful than tests that ignore such restrictions. In this article, we consider order-restricted tests for nonlinear mixed-effects models with measurement errors in time-dependent covariates. We propose to use a multiple imputation method to address measurement errors, since this approach allows us to use existing complete-data methods for order-restricted tests. Some theoretical results are presented. We evaluate our proposed methods via simulation studies that demonstrate they are more powerful than either a competing naive method or a two-step approach to testing hypotheses. We illustrate the use of our proposed approach by analyzing data from an HIV/AIDS study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信