Galappaththige S. R. de Silva, Pankaj K. Choudhary
{"title":"指数族函数数据的容差带","authors":"Galappaththige S. R. de Silva, Pankaj K. Choudhary","doi":"10.1002/cjs.11808","DOIUrl":null,"url":null,"abstract":"<p>A tolerance band for a functional response provides a region that is expected to contain a given fraction of observations from the sampled population at each point in the domain. This band is a functional analogue of the tolerance interval for a univariate response. Although the problem of constructing functional tolerance bands has been considered for a Gaussian response, it has not been investigated for non-Gaussian responses, which are common in biomedical applications. We describe a methodology for constructing tolerance bands for two non-Gaussian members of the exponential family: binomial and Poisson. The approach is to first model the data using the framework of generalized functional principal components analysis. Then, a parameter is identified in which the marginal distribution of the response is stochastically monotone. We show that the tolerance limits can be readily obtained from confidence limits for this parameter, which in turn can be computed using large-sample theory and bootstrapping. Our proposed methodology works for both dense and sparse functional data. We report the results of simulation studies designed to evaluate its performance and get recommendations for practical applications. We illustrate our proposed method using two actual biomedical studies, and also provide computer source code that implements our method.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tolerance bands for exponential family functional data\",\"authors\":\"Galappaththige S. R. de Silva, Pankaj K. Choudhary\",\"doi\":\"10.1002/cjs.11808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A tolerance band for a functional response provides a region that is expected to contain a given fraction of observations from the sampled population at each point in the domain. This band is a functional analogue of the tolerance interval for a univariate response. Although the problem of constructing functional tolerance bands has been considered for a Gaussian response, it has not been investigated for non-Gaussian responses, which are common in biomedical applications. We describe a methodology for constructing tolerance bands for two non-Gaussian members of the exponential family: binomial and Poisson. The approach is to first model the data using the framework of generalized functional principal components analysis. Then, a parameter is identified in which the marginal distribution of the response is stochastically monotone. We show that the tolerance limits can be readily obtained from confidence limits for this parameter, which in turn can be computed using large-sample theory and bootstrapping. Our proposed methodology works for both dense and sparse functional data. We report the results of simulation studies designed to evaluate its performance and get recommendations for practical applications. We illustrate our proposed method using two actual biomedical studies, and also provide computer source code that implements our method.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11808\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11808","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Tolerance bands for exponential family functional data
A tolerance band for a functional response provides a region that is expected to contain a given fraction of observations from the sampled population at each point in the domain. This band is a functional analogue of the tolerance interval for a univariate response. Although the problem of constructing functional tolerance bands has been considered for a Gaussian response, it has not been investigated for non-Gaussian responses, which are common in biomedical applications. We describe a methodology for constructing tolerance bands for two non-Gaussian members of the exponential family: binomial and Poisson. The approach is to first model the data using the framework of generalized functional principal components analysis. Then, a parameter is identified in which the marginal distribution of the response is stochastically monotone. We show that the tolerance limits can be readily obtained from confidence limits for this parameter, which in turn can be computed using large-sample theory and bootstrapping. Our proposed methodology works for both dense and sparse functional data. We report the results of simulation studies designed to evaluate its performance and get recommendations for practical applications. We illustrate our proposed method using two actual biomedical studies, and also provide computer source code that implements our method.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.