涉及 p-Laplacian 的准线性薛定谔方程解的存在性和渐近行为

IF 1.4 3区 数学 Q1 MATHEMATICS
Jiaxin Cao, Youjun Wang
{"title":"涉及 p-Laplacian 的准线性薛定谔方程解的存在性和渐近行为","authors":"Jiaxin Cao, Youjun Wang","doi":"10.1007/s11784-024-01118-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the existence and asymptotic behavior of positive solutions for quasilinear Schrödinger equations involving <i>p</i>-Laplacian </p><span>$$\\begin{aligned} -\\Delta _{p}u + \\kappa \\Delta _{p}(u^2)u + (\\lambda A( x) + 1)|u|^{p-2}u = h(u), \\quad u\\in W^{1,p}(\\mathbb {R}^N), \\end{aligned}$$</span><p>where <span>\\(2&lt;p&lt;N\\)</span>, <span>\\(\\kappa ,\\)</span> <span>\\(\\lambda \\)</span> are parameters and <i>A</i>(<i>x</i>) is a potential. The problem is quite sensitive to the sign of <span>\\(\\kappa \\)</span> and there have been many results for <span>\\(\\kappa \\le 0.\\)</span> By means of minimization on the Nehari manifold together with perturbation type techniques, we establish the existence of positive solutions for small <span>\\(\\kappa &gt;0\\)</span> and large <span>\\(\\lambda \\)</span>. Moreover, we show that the solutions <span>\\(u_{\\kappa ,\\lambda }\\)</span> converge in <span>\\(W^{1,p}\\)</span> to a positive solution of <i>p</i>-Laplacian in a bounded domain as <span>\\((\\kappa ,\\lambda )\\rightarrow (0^+,+\\infty )\\)</span>. Our results extend some known results of <span>\\(\\kappa \\le 0\\)</span>.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"23 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and asymptotic behavior of solutions for quasilinear Schrödinger equations involving p-Laplacian\",\"authors\":\"Jiaxin Cao, Youjun Wang\",\"doi\":\"10.1007/s11784-024-01118-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the existence and asymptotic behavior of positive solutions for quasilinear Schrödinger equations involving <i>p</i>-Laplacian </p><span>$$\\\\begin{aligned} -\\\\Delta _{p}u + \\\\kappa \\\\Delta _{p}(u^2)u + (\\\\lambda A( x) + 1)|u|^{p-2}u = h(u), \\\\quad u\\\\in W^{1,p}(\\\\mathbb {R}^N), \\\\end{aligned}$$</span><p>where <span>\\\\(2&lt;p&lt;N\\\\)</span>, <span>\\\\(\\\\kappa ,\\\\)</span> <span>\\\\(\\\\lambda \\\\)</span> are parameters and <i>A</i>(<i>x</i>) is a potential. The problem is quite sensitive to the sign of <span>\\\\(\\\\kappa \\\\)</span> and there have been many results for <span>\\\\(\\\\kappa \\\\le 0.\\\\)</span> By means of minimization on the Nehari manifold together with perturbation type techniques, we establish the existence of positive solutions for small <span>\\\\(\\\\kappa &gt;0\\\\)</span> and large <span>\\\\(\\\\lambda \\\\)</span>. Moreover, we show that the solutions <span>\\\\(u_{\\\\kappa ,\\\\lambda }\\\\)</span> converge in <span>\\\\(W^{1,p}\\\\)</span> to a positive solution of <i>p</i>-Laplacian in a bounded domain as <span>\\\\((\\\\kappa ,\\\\lambda )\\\\rightarrow (0^+,+\\\\infty )\\\\)</span>. Our results extend some known results of <span>\\\\(\\\\kappa \\\\le 0\\\\)</span>.</p>\",\"PeriodicalId\":54835,\"journal\":{\"name\":\"Journal of Fixed Point Theory and Applications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fixed Point Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-024-01118-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01118-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了涉及 p 拉普拉斯的准线性薛定谔方程的正解的存在性和渐近行为 $$\begin{aligned} -\Delta _{p}u + \kappa \Delta _{p}(u^2)u + (\lambda A( x) + 1)|u|^{p-2}u = h(u)、\quad u\in W^{1,p}(\mathbb {R}^N), \end{aligned}$$where\(2<;p<N\), \(\kappa ,\) \(\lambda \)是参数,A(x)是势。这个问题对 \(\kappa \)的符号相当敏感,对于 \(\kappa \le 0.\)已经有了很多结果。通过在奈哈里流形上的最小化以及扰动类型的技术,我们确定了小(\kappa >0\)和大(\lambda \)的正解的存在。此外,我们证明了在(W^{1,p}\)中解 \(u_{\kappa ,\lambda }\) 收敛到有界域中 p-Laplacian 的正解,即 \((\kappa ,\lambda )\rightarrow (0^+,+\infty )\).我们的结果扩展了一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Existence and asymptotic behavior of solutions for quasilinear Schrödinger equations involving p-Laplacian

Existence and asymptotic behavior of solutions for quasilinear Schrödinger equations involving p-Laplacian

In this paper, we investigate the existence and asymptotic behavior of positive solutions for quasilinear Schrödinger equations involving p-Laplacian

$$\begin{aligned} -\Delta _{p}u + \kappa \Delta _{p}(u^2)u + (\lambda A( x) + 1)|u|^{p-2}u = h(u), \quad u\in W^{1,p}(\mathbb {R}^N), \end{aligned}$$

where \(2<p<N\), \(\kappa ,\) \(\lambda \) are parameters and A(x) is a potential. The problem is quite sensitive to the sign of \(\kappa \) and there have been many results for \(\kappa \le 0.\) By means of minimization on the Nehari manifold together with perturbation type techniques, we establish the existence of positive solutions for small \(\kappa >0\) and large \(\lambda \). Moreover, we show that the solutions \(u_{\kappa ,\lambda }\) converge in \(W^{1,p}\) to a positive solution of p-Laplacian in a bounded domain as \((\kappa ,\lambda )\rightarrow (0^+,+\infty )\). Our results extend some known results of \(\kappa \le 0\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
68
审稿时长
>12 weeks
期刊介绍: The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to: (i) New developments in fixed point theory as well as in related topological methods, in particular: Degree and fixed point index for various types of maps, Algebraic topology methods in the context of the Leray-Schauder theory, Lefschetz and Nielsen theories, Borsuk-Ulam type results, Vietoris fractions and fixed points for set-valued maps. (ii) Ramifications to global analysis, dynamical systems and symplectic topology, in particular: Degree and Conley Index in the study of non-linear phenomena, Lusternik-Schnirelmann and Morse theoretic methods, Floer Homology and Hamiltonian Systems, Elliptic complexes and the Atiyah-Bott fixed point theorem, Symplectic fixed point theorems and results related to the Arnold Conjecture. (iii) Significant applications in nonlinear analysis, mathematical economics and computation theory, in particular: Bifurcation theory and non-linear PDE-s, Convex analysis and variational inequalities, KKM-maps, theory of games and economics, Fixed point algorithms for computing fixed points. (iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics, in particular: Global Riemannian geometry, Nonlinear problems in fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信