{"title":"线性规划准牛顿原始双内点算法的多项式最坏迭代复杂度","authors":"Jacek Gondzio, Francisco N. C. Sobral","doi":"10.1007/s10589-024-00584-6","DOIUrl":null,"url":null,"abstract":"<p>Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"42 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming\",\"authors\":\"Jacek Gondzio, Francisco N. C. Sobral\",\"doi\":\"10.1007/s10589-024-00584-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00584-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00584-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming
Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.