{"title":"基于非对称时变积分屏障 Lyapunov 函数的具有动态状态约束的非线性系统自适应优化控制","authors":"Yan Wei, Mingshuang Hao, Xinyi Yu, Linlin Ou","doi":"10.1631/fitee.2300675","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the issue of adaptive optimal tracking control for nonlinear systems with dynamic state constraints. An asymmetric time-varying integral barrier Lyapunov function (ATIBLF) based integral reinforcement learning (IRL) control algorithm with an actor–critic structure is first proposed. The ATIBLF items are appropriately arranged in every step of the optimized backstepping control design to ensure that the dynamic full-state constraints are never violated. Thus, optimal virtual/actual control in every backstepping subsystem is decomposed with ATIBLF items and also with an adaptive optimized item. Meanwhile, neural networks are used to approximate the gradient value functions. According to the Lyapunov stability theorem, the boundedness of all signals of the closed-loop system is proved, and the proposed control scheme ensures that the system states are within predefined compact sets. Finally, the effectiveness of the proposed control approach is validated by simulations.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"60 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric time-varying integral barrier Lyapunov function based adaptive optimal control for nonlinear systems with dynamic state constraints\",\"authors\":\"Yan Wei, Mingshuang Hao, Xinyi Yu, Linlin Ou\",\"doi\":\"10.1631/fitee.2300675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the issue of adaptive optimal tracking control for nonlinear systems with dynamic state constraints. An asymmetric time-varying integral barrier Lyapunov function (ATIBLF) based integral reinforcement learning (IRL) control algorithm with an actor–critic structure is first proposed. The ATIBLF items are appropriately arranged in every step of the optimized backstepping control design to ensure that the dynamic full-state constraints are never violated. Thus, optimal virtual/actual control in every backstepping subsystem is decomposed with ATIBLF items and also with an adaptive optimized item. Meanwhile, neural networks are used to approximate the gradient value functions. According to the Lyapunov stability theorem, the boundedness of all signals of the closed-loop system is proved, and the proposed control scheme ensures that the system states are within predefined compact sets. Finally, the effectiveness of the proposed control approach is validated by simulations.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300675\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300675","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Asymmetric time-varying integral barrier Lyapunov function based adaptive optimal control for nonlinear systems with dynamic state constraints
This paper investigates the issue of adaptive optimal tracking control for nonlinear systems with dynamic state constraints. An asymmetric time-varying integral barrier Lyapunov function (ATIBLF) based integral reinforcement learning (IRL) control algorithm with an actor–critic structure is first proposed. The ATIBLF items are appropriately arranged in every step of the optimized backstepping control design to ensure that the dynamic full-state constraints are never violated. Thus, optimal virtual/actual control in every backstepping subsystem is decomposed with ATIBLF items and also with an adaptive optimized item. Meanwhile, neural networks are used to approximate the gradient value functions. According to the Lyapunov stability theorem, the boundedness of all signals of the closed-loop system is proved, and the proposed control scheme ensures that the system states are within predefined compact sets. Finally, the effectiveness of the proposed control approach is validated by simulations.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.