{"title":"非线性二阶系统的多代理强化学习行为控制","authors":"Zhenyi Zhang, Jie Huang, Congjie Pan","doi":"10.1631/fitee.2300394","DOIUrl":null,"url":null,"abstract":"<p>Reinforcement learning behavioral control (RLBC) is limited to an individual agent without any swarm mission, because it models the behavior priority learning as a Markov decision process. In this paper, a novel multi-agent reinforcement learning behavioral control (MARLBC) method is proposed to overcome such limitations by implementing joint learning. Specifically, a multi-agent reinforcement learning mission supervisor (MARLMS) is designed for a group of nonlinear second-order systems to assign the behavior priorities at the decision layer. Through modeling behavior priority switching as a cooperative Markov game, the MARLMS learns an optimal joint behavior priority to reduce dependence on human intelligence and high-performance computing hardware. At the control layer, a group of second-order reinforcement learning controllers are designed to learn the optimal control policies to track position and velocity signals simultaneously. In particular, input saturation constraints are strictly implemented via designing a group of adaptive compensators. Numerical simulation results show that the proposed MARLBC has a lower switching frequency and control cost than finite-time and fixed-time behavioral control and RLBC methods.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"30 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-agent reinforcement learning behavioral control for nonlinear second-order systems\",\"authors\":\"Zhenyi Zhang, Jie Huang, Congjie Pan\",\"doi\":\"10.1631/fitee.2300394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reinforcement learning behavioral control (RLBC) is limited to an individual agent without any swarm mission, because it models the behavior priority learning as a Markov decision process. In this paper, a novel multi-agent reinforcement learning behavioral control (MARLBC) method is proposed to overcome such limitations by implementing joint learning. Specifically, a multi-agent reinforcement learning mission supervisor (MARLMS) is designed for a group of nonlinear second-order systems to assign the behavior priorities at the decision layer. Through modeling behavior priority switching as a cooperative Markov game, the MARLMS learns an optimal joint behavior priority to reduce dependence on human intelligence and high-performance computing hardware. At the control layer, a group of second-order reinforcement learning controllers are designed to learn the optimal control policies to track position and velocity signals simultaneously. In particular, input saturation constraints are strictly implemented via designing a group of adaptive compensators. Numerical simulation results show that the proposed MARLBC has a lower switching frequency and control cost than finite-time and fixed-time behavioral control and RLBC methods.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300394\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300394","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-agent reinforcement learning behavioral control for nonlinear second-order systems
Reinforcement learning behavioral control (RLBC) is limited to an individual agent without any swarm mission, because it models the behavior priority learning as a Markov decision process. In this paper, a novel multi-agent reinforcement learning behavioral control (MARLBC) method is proposed to overcome such limitations by implementing joint learning. Specifically, a multi-agent reinforcement learning mission supervisor (MARLMS) is designed for a group of nonlinear second-order systems to assign the behavior priorities at the decision layer. Through modeling behavior priority switching as a cooperative Markov game, the MARLMS learns an optimal joint behavior priority to reduce dependence on human intelligence and high-performance computing hardware. At the control layer, a group of second-order reinforcement learning controllers are designed to learn the optimal control policies to track position and velocity signals simultaneously. In particular, input saturation constraints are strictly implemented via designing a group of adaptive compensators. Numerical simulation results show that the proposed MARLBC has a lower switching frequency and control cost than finite-time and fixed-time behavioral control and RLBC methods.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.