使用猫群优化算法的雾计算服务激活管理新方法

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Sayed Mohsen Hashemi, Amir Sahafi, Amir Masoud Rahmani, Mahdi Bohlouli
{"title":"使用猫群优化算法的雾计算服务激活管理新方法","authors":"Sayed Mohsen Hashemi, Amir Sahafi, Amir Masoud Rahmani, Mahdi Bohlouli","doi":"10.1007/s00607-024-01302-0","DOIUrl":null,"url":null,"abstract":"<p>Today, with the increasing expansion of IoT devices and the growing number of user requests, processing their demands in computational environments has become increasingly challenging.The large volume of user requests and the appropriate distribution of tasks among computational resources often result in disordered energy consumption and increased latency. The correct allocation of resources and reducing energy consumption in fog computing are still significant challenges in this field. Improving resource management methods can provide better services for users. In this article, with the aim of more efficient allocation of resources and service activation management, the metaheuristic algorithm CSO (Cat Swarm Optimization) is used. User requests are received by a request evaluator, prioritized, and efficiently executed using the container live migration technique on fog resources. The container live migration technique leads to the migration of services and their better placement on fog resources, avoiding unnecessary activation of physical resources. The proposed method uses a resource manager to identify and classify available resources, aiming to determine the initial capacity of physical fog resources. The performance of the proposed method has been tested and evaluated using six metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization, Grasshopper Optimization algorithm, Genetic algorithm, Cuckoo Optimization algorithm, and Gray Wolf Optimization, within iFogSim. The proposed method has shown superior efficiency in energy consumption, execution time, latency, and network lifetime compared to other algorithms.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"58 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach for service activation management in fog computing using Cat Swarm Optimization algorithm\",\"authors\":\"Sayed Mohsen Hashemi, Amir Sahafi, Amir Masoud Rahmani, Mahdi Bohlouli\",\"doi\":\"10.1007/s00607-024-01302-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Today, with the increasing expansion of IoT devices and the growing number of user requests, processing their demands in computational environments has become increasingly challenging.The large volume of user requests and the appropriate distribution of tasks among computational resources often result in disordered energy consumption and increased latency. The correct allocation of resources and reducing energy consumption in fog computing are still significant challenges in this field. Improving resource management methods can provide better services for users. In this article, with the aim of more efficient allocation of resources and service activation management, the metaheuristic algorithm CSO (Cat Swarm Optimization) is used. User requests are received by a request evaluator, prioritized, and efficiently executed using the container live migration technique on fog resources. The container live migration technique leads to the migration of services and their better placement on fog resources, avoiding unnecessary activation of physical resources. The proposed method uses a resource manager to identify and classify available resources, aiming to determine the initial capacity of physical fog resources. The performance of the proposed method has been tested and evaluated using six metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization, Grasshopper Optimization algorithm, Genetic algorithm, Cuckoo Optimization algorithm, and Gray Wolf Optimization, within iFogSim. The proposed method has shown superior efficiency in energy consumption, execution time, latency, and network lifetime compared to other algorithms.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01302-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01302-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

如今,随着物联网设备的日益扩展和用户请求数量的不断增加,在计算环境中处理用户需求变得越来越具有挑战性。大量的用户请求和计算资源之间任务的合理分配往往会导致能源消耗紊乱和延迟增加。如何在雾计算中正确分配资源并降低能耗,仍是该领域面临的重大挑战。改进资源管理方法可以为用户提供更好的服务。本文采用元启发式算法 CSO(猫群优化)来实现更高效的资源分配和服务激活管理。用户请求由请求评估器接收,经过优先排序后,使用容器实时迁移技术在雾资源上高效执行。容器实时迁移技术可以迁移服务并将其更好地放置在雾资源上,避免不必要地激活物理资源。建议的方法使用资源管理器来识别和分类可用资源,旨在确定物理雾资源的初始容量。在 iFogSim 中,使用六种元启发式算法,即粒子群优化算法(PSO)、蚁群优化算法、蚱蜢优化算法、遗传算法、布谷鸟优化算法和灰狼优化算法,对所提方法的性能进行了测试和评估。与其他算法相比,所提出的方法在能源消耗、执行时间、延迟和网络寿命方面都表现出更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A new approach for service activation management in fog computing using Cat Swarm Optimization algorithm

A new approach for service activation management in fog computing using Cat Swarm Optimization algorithm

Today, with the increasing expansion of IoT devices and the growing number of user requests, processing their demands in computational environments has become increasingly challenging.The large volume of user requests and the appropriate distribution of tasks among computational resources often result in disordered energy consumption and increased latency. The correct allocation of resources and reducing energy consumption in fog computing are still significant challenges in this field. Improving resource management methods can provide better services for users. In this article, with the aim of more efficient allocation of resources and service activation management, the metaheuristic algorithm CSO (Cat Swarm Optimization) is used. User requests are received by a request evaluator, prioritized, and efficiently executed using the container live migration technique on fog resources. The container live migration technique leads to the migration of services and their better placement on fog resources, avoiding unnecessary activation of physical resources. The proposed method uses a resource manager to identify and classify available resources, aiming to determine the initial capacity of physical fog resources. The performance of the proposed method has been tested and evaluated using six metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization, Grasshopper Optimization algorithm, Genetic algorithm, Cuckoo Optimization algorithm, and Gray Wolf Optimization, within iFogSim. The proposed method has shown superior efficiency in energy consumption, execution time, latency, and network lifetime compared to other algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信