稳健的 Lambda-quantiles 和极端概率

Xia Han, Peng Liu
{"title":"稳健的 Lambda-quantiles 和极端概率","authors":"Xia Han, Peng Liu","doi":"arxiv-2406.13539","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the robust models for $\\Lambda$-quantiles with\npartial information regarding the loss distribution, where $\\Lambda$-quantiles\nextend the classical quantiles by replacing the fixed probability level with a\nprobability/loss function $\\Lambda$. We find that, under some assumptions, the\nrobust $\\Lambda$-quantiles equal the $\\Lambda$-quantiles of the extreme\nprobabilities. This finding allows us to obtain the robust $\\Lambda$-quantiles\nby applying the results of robust quantiles in the literature. Our results are\napplied to uncertainty sets characterized by three different constraints\nrespectively: moment constraints, probability distance constraints via\nWasserstein metric, and marginal constraints in risk aggregation. We obtain\nsome explicit expressions for robust $\\Lambda$-quantiles by deriving the\nextreme probabilities for each uncertainty set. Those results are applied to\noptimal portfolio selection under model uncertainty.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Lambda-quantiles and extreme probabilities\",\"authors\":\"Xia Han, Peng Liu\",\"doi\":\"arxiv-2406.13539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the robust models for $\\\\Lambda$-quantiles with\\npartial information regarding the loss distribution, where $\\\\Lambda$-quantiles\\nextend the classical quantiles by replacing the fixed probability level with a\\nprobability/loss function $\\\\Lambda$. We find that, under some assumptions, the\\nrobust $\\\\Lambda$-quantiles equal the $\\\\Lambda$-quantiles of the extreme\\nprobabilities. This finding allows us to obtain the robust $\\\\Lambda$-quantiles\\nby applying the results of robust quantiles in the literature. Our results are\\napplied to uncertainty sets characterized by three different constraints\\nrespectively: moment constraints, probability distance constraints via\\nWasserstein metric, and marginal constraints in risk aggregation. We obtain\\nsome explicit expressions for robust $\\\\Lambda$-quantiles by deriving the\\nextreme probabilities for each uncertainty set. Those results are applied to\\noptimal portfolio selection under model uncertainty.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.13539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.13539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了具有损失分布部分信息的$\Lambda$-量值的稳健模型,其中$\Lambda$-量值通过用概率/损失函数$\Lambda$代替固定概率水平而扩展了经典量值。我们发现,在某些假设条件下,稳健的 $/Lambda$-quantiles 等于极端概率的 $/Lambda$-quantiles。这一发现使我们能够通过应用文献中稳健量值的结果来获得稳健的 $\Lambda$-quantiles 。我们的结果被应用于由三种不同约束分别表征的不确定性集:矩约束、通过瓦瑟斯坦度量的概率距离约束以及风险聚合中的边际约束。通过推导每个不确定性集的极端概率,我们得到了稳健$\Lambda$-量化的一些明确表达式。这些结果被应用于模型不确定性下的最优投资组合选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Lambda-quantiles and extreme probabilities
In this paper, we investigate the robust models for $\Lambda$-quantiles with partial information regarding the loss distribution, where $\Lambda$-quantiles extend the classical quantiles by replacing the fixed probability level with a probability/loss function $\Lambda$. We find that, under some assumptions, the robust $\Lambda$-quantiles equal the $\Lambda$-quantiles of the extreme probabilities. This finding allows us to obtain the robust $\Lambda$-quantiles by applying the results of robust quantiles in the literature. Our results are applied to uncertainty sets characterized by three different constraints respectively: moment constraints, probability distance constraints via Wasserstein metric, and marginal constraints in risk aggregation. We obtain some explicit expressions for robust $\Lambda$-quantiles by deriving the extreme probabilities for each uncertainty set. Those results are applied to optimal portfolio selection under model uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信