计算 SSR

Peter K. Friz, Jim Gatheral
{"title":"计算 SSR","authors":"Peter K. Friz, Jim Gatheral","doi":"arxiv-2406.16131","DOIUrl":null,"url":null,"abstract":"The skew-stickiness-ratio (SSR), examined in detail by Bergomi in his book,\nis critically important to options traders, especially market makers. We\npresent a model-free expression for the SSR in terms of the characteristic\nfunction. In the diffusion setting, it is well-known that the short-term limit\nof the SSR is 2; a corollary of our results is that this limit is $H+3/2$ where\n$H$ is the Hurst exponent of the volatility process. The general formula for\nthe SSR simplifies and becomes particularly tractable in the affine forward\nvariance case. We explain the qualitative behavior of the SSR with respect to\nthe shape of the forward variance curve, and thus also path-dependence of the\nSSR.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the SSR\",\"authors\":\"Peter K. Friz, Jim Gatheral\",\"doi\":\"arxiv-2406.16131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The skew-stickiness-ratio (SSR), examined in detail by Bergomi in his book,\\nis critically important to options traders, especially market makers. We\\npresent a model-free expression for the SSR in terms of the characteristic\\nfunction. In the diffusion setting, it is well-known that the short-term limit\\nof the SSR is 2; a corollary of our results is that this limit is $H+3/2$ where\\n$H$ is the Hurst exponent of the volatility process. The general formula for\\nthe SSR simplifies and becomes particularly tractable in the affine forward\\nvariance case. We explain the qualitative behavior of the SSR with respect to\\nthe shape of the forward variance curve, and thus also path-dependence of the\\nSSR.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.16131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Bergomi 在他的书中详细研究了偏斜粘滞比(SSR),这对期权交易者,尤其是做市商至关重要。我们用特征函数给出了 SSR 的无模型表达式。众所周知,在扩散设置中,SSR 的短期极限是 2;我们结果的一个推论是,这个极限是 $H+3/2$,其中$H$是波动率过程的赫斯特指数。在仿射前向方差情况下,SSR 的一般公式变得简单易行。我们解释了 SSR 与前向方差曲线形状有关的定性行为,从而也解释了 SSR 的路径依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the SSR
The skew-stickiness-ratio (SSR), examined in detail by Bergomi in his book, is critically important to options traders, especially market makers. We present a model-free expression for the SSR in terms of the characteristic function. In the diffusion setting, it is well-known that the short-term limit of the SSR is 2; a corollary of our results is that this limit is $H+3/2$ where $H$ is the Hurst exponent of the volatility process. The general formula for the SSR simplifies and becomes particularly tractable in the affine forward variance case. We explain the qualitative behavior of the SSR with respect to the shape of the forward variance curve, and thus also path-dependence of the SSR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信