论泊松分布式薛定谔算子的残留物展开和综合状态密度

Pub Date : 2024-07-04 DOI:10.1007/s11785-024-01546-w
David Hasler, Jannis Koberstein
{"title":"论泊松分布式薛定谔算子的残留物展开和综合状态密度","authors":"David Hasler, Jannis Koberstein","doi":"10.1007/s11785-024-01546-w","DOIUrl":null,"url":null,"abstract":"<p>We consider a Schrödinger operator with random potential distributed according to a Poisson process. We show that under a uniform moment bound expectations of matrix elements of the resolvent as well as the integrated density of states can be approximated to arbitrary precision in powers of the coupling constant. The expansion coefficients are given in terms of expectations obtained by Neumann expanding the potential around the free Laplacian. Our results are valid for arbitrary strength of the disorder parameter, including the small disorder regime.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Expansion of Resolvents and the Integrated Density of States for Poisson Distributed Schrödinger Operators\",\"authors\":\"David Hasler, Jannis Koberstein\",\"doi\":\"10.1007/s11785-024-01546-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a Schrödinger operator with random potential distributed according to a Poisson process. We show that under a uniform moment bound expectations of matrix elements of the resolvent as well as the integrated density of states can be approximated to arbitrary precision in powers of the coupling constant. The expansion coefficients are given in terms of expectations obtained by Neumann expanding the potential around the free Laplacian. Our results are valid for arbitrary strength of the disorder parameter, including the small disorder regime.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01546-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01546-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个根据泊松过程分布随机势能的薛定谔算子。我们证明,在统一矩约束下,解析矩阵元素的期望值以及积分态密度可以近似为任意精度的耦合常数幂。扩展系数是通过围绕自由拉普拉卡矩的Neumann扩展势得到的期望值给出的。我们的结果适用于任意强度的无序参数,包括小无序机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Expansion of Resolvents and the Integrated Density of States for Poisson Distributed Schrödinger Operators

We consider a Schrödinger operator with random potential distributed according to a Poisson process. We show that under a uniform moment bound expectations of matrix elements of the resolvent as well as the integrated density of states can be approximated to arbitrary precision in powers of the coupling constant. The expansion coefficients are given in terms of expectations obtained by Neumann expanding the potential around the free Laplacian. Our results are valid for arbitrary strength of the disorder parameter, including the small disorder regime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信