非均质非线性薛定谔方程的全局存在性和散射

IF 1.1 3区 数学 Q1 MATHEMATICS
Lassaad Aloui, Slim Tayachi
{"title":"非均质非线性薛定谔方程的全局存在性和散射","authors":"Lassaad Aloui, Slim Tayachi","doi":"10.1007/s00028-024-00965-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the inhomogeneous nonlinear Schrödinger equation <span>\\(i\\partial _t u +\\Delta u =K(x)|u|^\\alpha u,\\; u(0)=u_0\\in H^1({\\mathbb {R}}^N),\\; N\\ge 3,\\; |K(x)|+|x||\\nabla K(x)|\\lesssim |x|^{-b},\\; 0&lt;b&lt; \\min (2, N-2),\\; 0&lt;\\alpha &lt;{(4-2b)/(N-2)}\\)</span>. We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted <span>\\(L^2\\)</span>-space for a new range <span>\\(\\alpha _0(b)&lt;\\alpha &lt;(4-2b)/N\\)</span>. The value <span>\\(\\alpha _0(b)\\)</span> is the positive root of <span>\\(N\\alpha ^2+(N-2+2b)\\alpha -4+2b=0,\\)</span> which extends the Strauss exponent known for <span>\\(b=0\\)</span>. Our results improve the known ones for <span>\\(K(x)=\\mu |x|^{-b}\\)</span>, <span>\\(\\mu \\in {\\mathbb {C}}\\)</span>. For general potentials, we highlight the impact of the behavior at the origin and infinity on the allowed range of <span>\\(\\alpha \\)</span>. In the defocusing case, we prove decay estimates provided that the potential satisfies some rigidity-type condition which leads to a scattering result. We give also a new scattering criterion taking into account the potential <i>K</i>.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"23 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation\",\"authors\":\"Lassaad Aloui, Slim Tayachi\",\"doi\":\"10.1007/s00028-024-00965-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the inhomogeneous nonlinear Schrödinger equation <span>\\\\(i\\\\partial _t u +\\\\Delta u =K(x)|u|^\\\\alpha u,\\\\; u(0)=u_0\\\\in H^1({\\\\mathbb {R}}^N),\\\\; N\\\\ge 3,\\\\; |K(x)|+|x||\\\\nabla K(x)|\\\\lesssim |x|^{-b},\\\\; 0&lt;b&lt; \\\\min (2, N-2),\\\\; 0&lt;\\\\alpha &lt;{(4-2b)/(N-2)}\\\\)</span>. We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted <span>\\\\(L^2\\\\)</span>-space for a new range <span>\\\\(\\\\alpha _0(b)&lt;\\\\alpha &lt;(4-2b)/N\\\\)</span>. The value <span>\\\\(\\\\alpha _0(b)\\\\)</span> is the positive root of <span>\\\\(N\\\\alpha ^2+(N-2+2b)\\\\alpha -4+2b=0,\\\\)</span> which extends the Strauss exponent known for <span>\\\\(b=0\\\\)</span>. Our results improve the known ones for <span>\\\\(K(x)=\\\\mu |x|^{-b}\\\\)</span>, <span>\\\\(\\\\mu \\\\in {\\\\mathbb {C}}\\\\)</span>. For general potentials, we highlight the impact of the behavior at the origin and infinity on the allowed range of <span>\\\\(\\\\alpha \\\\)</span>. In the defocusing case, we prove decay estimates provided that the potential satisfies some rigidity-type condition which leads to a scattering result. We give also a new scattering criterion taking into account the potential <i>K</i>.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00965-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00965-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑非均质非线性薛定谔方程(i/partial _t u +\Delta u =K(x)|u|^\alpha u,\;u(0)=u_0\in H^1({\mathbb {R}}^N),\; N\ge 3,\; |K(x)|+|x||\nabla K(x)|\lesssim |x|^{-b},\; 0<b< \min (2, N-2),\; 0<\alpha <{(4-2b)/(N-2)}\).我们得到了振荡初始数据和散射理论在加权(L^2)空间中新范围(\(\alpha _0(b)<\alpha <(4-2b)/N\) 的全局存在性的新结果。值 \(\alpha _0(b)\) 是 \(N\alpha ^2+(N-2+2b)\alpha -4+2b=0,\)的正根,它扩展了已知的 \(b=0\) 的斯特劳斯指数。我们的结果改进了已知的 \(K(x)=\mu |x|^{-b}\), \(\mu \in {\mathbb {C}}\) 的结果。对于一般电势,我们强调原点和无穷远处的行为对 \(\alpha \)允许范围的影响。在散焦情况下,我们证明了衰减估计,前提是势满足某种刚性条件,从而导致散射结果。我们还给出了一个考虑到势能 K 的新的散射准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation

In this paper, we consider the inhomogeneous nonlinear Schrödinger equation \(i\partial _t u +\Delta u =K(x)|u|^\alpha u,\; u(0)=u_0\in H^1({\mathbb {R}}^N),\; N\ge 3,\; |K(x)|+|x||\nabla K(x)|\lesssim |x|^{-b},\; 0<b< \min (2, N-2),\; 0<\alpha <{(4-2b)/(N-2)}\). We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted \(L^2\)-space for a new range \(\alpha _0(b)<\alpha <(4-2b)/N\). The value \(\alpha _0(b)\) is the positive root of \(N\alpha ^2+(N-2+2b)\alpha -4+2b=0,\) which extends the Strauss exponent known for \(b=0\). Our results improve the known ones for \(K(x)=\mu |x|^{-b}\), \(\mu \in {\mathbb {C}}\). For general potentials, we highlight the impact of the behavior at the origin and infinity on the allowed range of \(\alpha \). In the defocusing case, we prove decay estimates provided that the potential satisfies some rigidity-type condition which leads to a scattering result. We give also a new scattering criterion taking into account the potential K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信