Yongcai Song, Yujia Su, Shaik Althaf Hussain, Cuiping Tang
{"title":"将白藜芦醇和泼尼松龙载入人血清白蛋白纳米颗粒以缓解类风湿性关节炎症状:一项体外和体内研究","authors":"Yongcai Song, Yujia Su, Shaik Althaf Hussain, Cuiping Tang","doi":"10.2478/msp-2024-0005","DOIUrl":null,"url":null,"abstract":"Rheumatoid arthritis is a chronic autoimmune-disease-causing inflammation, joint pain, and joint destruction, severely affecting the quality of life of millions worldwide. In the current research, a nanocarrier system was developed for the delivery of resveratrol and prednisolone to treat rheumatoid arthritis. The drug delivery system was characterized in vitro using scanning electron microscopy and various cell culture studies. Finally, the alleviative symptoms of the developed treatment strategy were investigated in a rat model of rheumatoid arthritis. In vitro studies showed that the carrier system released the drugs in a sustained manner and possessed strong immunomodulatory functions. Nanocarriers loaded with prednisolone, resveratrol, and drug-free carriers had 396.88 ± 76.41 nm, 392.49 ± 97.31 nm, and 338.02 ± 77.75 nm of mean particle size, respectively. In vivo studies revealed that local injection of the carrier system could alleviate the degenerative effects of rheumatoid arthritis. ELISA assays showed that the co-injection of resveratrol and prednisolone-loaded albumin nanoparticles could significantly modulate inflammatory responses. The developed treatment modality may potentially be used to treat rheumatoid arthritis.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"18 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resveratrol and prednisolone loaded into human serum albumin nanoparticles for the alleviation of rheumatoid arthritis symptoms: an in vitro and in vivo study\",\"authors\":\"Yongcai Song, Yujia Su, Shaik Althaf Hussain, Cuiping Tang\",\"doi\":\"10.2478/msp-2024-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rheumatoid arthritis is a chronic autoimmune-disease-causing inflammation, joint pain, and joint destruction, severely affecting the quality of life of millions worldwide. In the current research, a nanocarrier system was developed for the delivery of resveratrol and prednisolone to treat rheumatoid arthritis. The drug delivery system was characterized in vitro using scanning electron microscopy and various cell culture studies. Finally, the alleviative symptoms of the developed treatment strategy were investigated in a rat model of rheumatoid arthritis. In vitro studies showed that the carrier system released the drugs in a sustained manner and possessed strong immunomodulatory functions. Nanocarriers loaded with prednisolone, resveratrol, and drug-free carriers had 396.88 ± 76.41 nm, 392.49 ± 97.31 nm, and 338.02 ± 77.75 nm of mean particle size, respectively. In vivo studies revealed that local injection of the carrier system could alleviate the degenerative effects of rheumatoid arthritis. ELISA assays showed that the co-injection of resveratrol and prednisolone-loaded albumin nanoparticles could significantly modulate inflammatory responses. The developed treatment modality may potentially be used to treat rheumatoid arthritis.\",\"PeriodicalId\":18269,\"journal\":{\"name\":\"Materials Science-Poland\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science-Poland\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2478/msp-2024-0005\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/msp-2024-0005","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Resveratrol and prednisolone loaded into human serum albumin nanoparticles for the alleviation of rheumatoid arthritis symptoms: an in vitro and in vivo study
Rheumatoid arthritis is a chronic autoimmune-disease-causing inflammation, joint pain, and joint destruction, severely affecting the quality of life of millions worldwide. In the current research, a nanocarrier system was developed for the delivery of resveratrol and prednisolone to treat rheumatoid arthritis. The drug delivery system was characterized in vitro using scanning electron microscopy and various cell culture studies. Finally, the alleviative symptoms of the developed treatment strategy were investigated in a rat model of rheumatoid arthritis. In vitro studies showed that the carrier system released the drugs in a sustained manner and possessed strong immunomodulatory functions. Nanocarriers loaded with prednisolone, resveratrol, and drug-free carriers had 396.88 ± 76.41 nm, 392.49 ± 97.31 nm, and 338.02 ± 77.75 nm of mean particle size, respectively. In vivo studies revealed that local injection of the carrier system could alleviate the degenerative effects of rheumatoid arthritis. ELISA assays showed that the co-injection of resveratrol and prednisolone-loaded albumin nanoparticles could significantly modulate inflammatory responses. The developed treatment modality may potentially be used to treat rheumatoid arthritis.
期刊介绍:
Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.