关于三维可压缩纳维-斯托克斯方程的研究

IF 1.7 4区 数学 Q1 Mathematics
Mohamed Abdelwahed, Rabe Bade, Hedia Chaker, Maatoug Hassine
{"title":"关于三维可压缩纳维-斯托克斯方程的研究","authors":"Mohamed Abdelwahed, Rabe Bade, Hedia Chaker, Maatoug Hassine","doi":"10.1186/s13661-024-01893-9","DOIUrl":null,"url":null,"abstract":"This work is devoted to the study of three-dimensional compressible Navier–Stokes equations on unstructured meshes. The approach used is based on separating the convection and diffusion parts. The convective flux is computed using the Godunov method. For the diffusive part, we present a new finite volume scheme. Numerical results are provided to demonstrate the efficiency of the developed technique.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the study of three-dimensional compressible Navier–Stokes equations\",\"authors\":\"Mohamed Abdelwahed, Rabe Bade, Hedia Chaker, Maatoug Hassine\",\"doi\":\"10.1186/s13661-024-01893-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the study of three-dimensional compressible Navier–Stokes equations on unstructured meshes. The approach used is based on separating the convection and diffusion parts. The convective flux is computed using the Godunov method. For the diffusive part, we present a new finite volume scheme. Numerical results are provided to demonstrate the efficiency of the developed technique.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01893-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01893-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于研究非结构网格上的三维可压缩纳维-斯托克斯方程。所使用的方法基于对流和扩散部分的分离。对流通量使用戈杜诺夫方法计算。对于扩散部分,我们提出了一种新的有限体积方案。数值结果证明了所开发技术的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the study of three-dimensional compressible Navier–Stokes equations
This work is devoted to the study of three-dimensional compressible Navier–Stokes equations on unstructured meshes. The approach used is based on separating the convection and diffusion parts. The convective flux is computed using the Godunov method. For the diffusive part, we present a new finite volume scheme. Numerical results are provided to demonstrate the efficiency of the developed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信