Hossein Kiani, Qinge Ma, Mengsong Xiao, Yuchen Li, Felix Joel Brooke, Shane Mulcahy, Svitlana Miros, Ronald Halim
{"title":"在纳米过滤乳清渗透液上培养的大洋藻的生长和脂肪酸概况","authors":"Hossein Kiani, Qinge Ma, Mengsong Xiao, Yuchen Li, Felix Joel Brooke, Shane Mulcahy, Svitlana Miros, Ronald Halim","doi":"10.1007/s10811-024-03287-x","DOIUrl":null,"url":null,"abstract":"<p>Nano-filtered whey permeate (WP), a major by-product of dairy industry, is produced by membrane filtration of whey. The oleaginous microalga <i>Nannochloropsis oceanica</i> was successfully cultivated on WP without salinity and nutrient amendments. Growth, cell characteristics, and fatty acid profile of the cultures were analyzed using microscopy, flow cytometry, and GC analysis. WP was nitrogen limited, comprising primarily protein as a nitrogen source and only small amounts of free inorganic nitrogen (in the form of nitrate). <i>Nannochloropsis oceanica</i> (and associated bacteria) efficiently removed nitrate (100%), protein (87%), and phosphate (74%) from the whey permeate. Microscopic and flow cytometric analysis revealed diverse size distributions in whey permeate cultures, with significant cell aggregation attributed to low-salinity acclimatization and nitrogen limitation. Autofluorescence analysis revealed reduced photosynthetic activity in whey permeate-grown cells, possibly as a consequence of heightened mixotrophic activities on carbon source in the medium. Low nitrogen availability in whey permeate resulted in biomass with a fatty acid profile enriched in saturated fatty acids. Despite this, a considerable level of the omega-3 polyunsaturated fatty acid (in the form of eicosapentanoic acid or EPA) was detected at ca. 16% of total fatty acids. Whey permeate proved beneficial for the growth of <i>N. oceanica</i> and yielded high concentrations of eicosapentaenoic acid in the extracted lipids for potential applications in the feed/food industries.</p>","PeriodicalId":15086,"journal":{"name":"Journal of Applied Phycology","volume":"44 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and fatty acid profile of Nannochloropsis oceanica cultivated on nano-filtered whey permeate\",\"authors\":\"Hossein Kiani, Qinge Ma, Mengsong Xiao, Yuchen Li, Felix Joel Brooke, Shane Mulcahy, Svitlana Miros, Ronald Halim\",\"doi\":\"10.1007/s10811-024-03287-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nano-filtered whey permeate (WP), a major by-product of dairy industry, is produced by membrane filtration of whey. The oleaginous microalga <i>Nannochloropsis oceanica</i> was successfully cultivated on WP without salinity and nutrient amendments. Growth, cell characteristics, and fatty acid profile of the cultures were analyzed using microscopy, flow cytometry, and GC analysis. WP was nitrogen limited, comprising primarily protein as a nitrogen source and only small amounts of free inorganic nitrogen (in the form of nitrate). <i>Nannochloropsis oceanica</i> (and associated bacteria) efficiently removed nitrate (100%), protein (87%), and phosphate (74%) from the whey permeate. Microscopic and flow cytometric analysis revealed diverse size distributions in whey permeate cultures, with significant cell aggregation attributed to low-salinity acclimatization and nitrogen limitation. Autofluorescence analysis revealed reduced photosynthetic activity in whey permeate-grown cells, possibly as a consequence of heightened mixotrophic activities on carbon source in the medium. Low nitrogen availability in whey permeate resulted in biomass with a fatty acid profile enriched in saturated fatty acids. Despite this, a considerable level of the omega-3 polyunsaturated fatty acid (in the form of eicosapentanoic acid or EPA) was detected at ca. 16% of total fatty acids. Whey permeate proved beneficial for the growth of <i>N. oceanica</i> and yielded high concentrations of eicosapentaenoic acid in the extracted lipids for potential applications in the feed/food industries.</p>\",\"PeriodicalId\":15086,\"journal\":{\"name\":\"Journal of Applied Phycology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10811-024-03287-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03287-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Growth and fatty acid profile of Nannochloropsis oceanica cultivated on nano-filtered whey permeate
Nano-filtered whey permeate (WP), a major by-product of dairy industry, is produced by membrane filtration of whey. The oleaginous microalga Nannochloropsis oceanica was successfully cultivated on WP without salinity and nutrient amendments. Growth, cell characteristics, and fatty acid profile of the cultures were analyzed using microscopy, flow cytometry, and GC analysis. WP was nitrogen limited, comprising primarily protein as a nitrogen source and only small amounts of free inorganic nitrogen (in the form of nitrate). Nannochloropsis oceanica (and associated bacteria) efficiently removed nitrate (100%), protein (87%), and phosphate (74%) from the whey permeate. Microscopic and flow cytometric analysis revealed diverse size distributions in whey permeate cultures, with significant cell aggregation attributed to low-salinity acclimatization and nitrogen limitation. Autofluorescence analysis revealed reduced photosynthetic activity in whey permeate-grown cells, possibly as a consequence of heightened mixotrophic activities on carbon source in the medium. Low nitrogen availability in whey permeate resulted in biomass with a fatty acid profile enriched in saturated fatty acids. Despite this, a considerable level of the omega-3 polyunsaturated fatty acid (in the form of eicosapentanoic acid or EPA) was detected at ca. 16% of total fatty acids. Whey permeate proved beneficial for the growth of N. oceanica and yielded high concentrations of eicosapentaenoic acid in the extracted lipids for potential applications in the feed/food industries.
期刊介绍:
The Journal of Applied Phycology publishes work on the rapidly expanding subject of the commercial use of algae.
The journal accepts submissions on fundamental research, development of techniques and practical applications in such areas as algal and cyanobacterial biotechnology and genetic engineering, tissues culture, culture collections, commercially useful micro-algae and their products, mariculture, algalization and soil fertility, pollution and fouling, monitoring, toxicity tests, toxic compounds, antibiotics and other biologically active compounds.
Each issue of the Journal of Applied Phycology also includes a short section for brief notes and general information on new products, patents and company news.