Veronica Vinciotti, Ernst C. Wit, Francisco Richter
{"title":"相关环境中微生物群相互作用的随机图形模型","authors":"Veronica Vinciotti, Ernst C. Wit, Francisco Richter","doi":"10.1007/s13253-024-00638-6","DOIUrl":null,"url":null,"abstract":"<p>The microbiome constitutes a complex microbial ecology of interacting components that regulates important pathways in the host. Most microbial communities at various body sites tend to share common substructures of interactions, while also showing diversity related to the needs of the local environment. The aim of this paper is to develop a method for inferring both the common core and the differences in such microbiota systems. The approach combines two elements: (i) a random graph model generating networks across environments, and capturing potential relatedness at the structural level, with (ii) a Gaussian copula graphical model for the inference of environment-specific networks from multivariate microbial data. We propose a Bayesian approach for the joint inference of microbiota systems from metagenomic data for a number of body sites. The analysis of human microbiome data shows how the proposed random graphical model is able to capture varying levels of structural similarity across the different body sites and how this is supported by their taxonomical classification. Beyond a stable core, the inferred microbiome systems show interesting differences between the body sites, as well as interpretable relationships between various classes of microbes.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Graphical Model of Microbiome Interactions in Related Environments\",\"authors\":\"Veronica Vinciotti, Ernst C. Wit, Francisco Richter\",\"doi\":\"10.1007/s13253-024-00638-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microbiome constitutes a complex microbial ecology of interacting components that regulates important pathways in the host. Most microbial communities at various body sites tend to share common substructures of interactions, while also showing diversity related to the needs of the local environment. The aim of this paper is to develop a method for inferring both the common core and the differences in such microbiota systems. The approach combines two elements: (i) a random graph model generating networks across environments, and capturing potential relatedness at the structural level, with (ii) a Gaussian copula graphical model for the inference of environment-specific networks from multivariate microbial data. We propose a Bayesian approach for the joint inference of microbiota systems from metagenomic data for a number of body sites. The analysis of human microbiome data shows how the proposed random graphical model is able to capture varying levels of structural similarity across the different body sites and how this is supported by their taxonomical classification. Beyond a stable core, the inferred microbiome systems show interesting differences between the body sites, as well as interpretable relationships between various classes of microbes.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-024-00638-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00638-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Random Graphical Model of Microbiome Interactions in Related Environments
The microbiome constitutes a complex microbial ecology of interacting components that regulates important pathways in the host. Most microbial communities at various body sites tend to share common substructures of interactions, while also showing diversity related to the needs of the local environment. The aim of this paper is to develop a method for inferring both the common core and the differences in such microbiota systems. The approach combines two elements: (i) a random graph model generating networks across environments, and capturing potential relatedness at the structural level, with (ii) a Gaussian copula graphical model for the inference of environment-specific networks from multivariate microbial data. We propose a Bayesian approach for the joint inference of microbiota systems from metagenomic data for a number of body sites. The analysis of human microbiome data shows how the proposed random graphical model is able to capture varying levels of structural similarity across the different body sites and how this is supported by their taxonomical classification. Beyond a stable core, the inferred microbiome systems show interesting differences between the body sites, as well as interpretable relationships between various classes of microbes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.