Yang Wen, Yi-Lin Wu, Lei Bi, Wu-Zhen Shi, Xiao-Xiao Liu, Yu-Peng Xu, Xun Xu, Wen-Ming Cao, David Dagan Feng
{"title":"用于脉络膜血管分割的变压器辅助级联学习网络","authors":"Yang Wen, Yi-Lin Wu, Lei Bi, Wu-Zhen Shi, Xiao-Xiao Liu, Yu-Peng Xu, Xun Xu, Wen-Ming Cao, David Dagan Feng","doi":"10.1007/s11390-024-3679-2","DOIUrl":null,"url":null,"abstract":"<p>As a highly vascular eye part, the choroid is crucial in various eye disease diagnoses. However, limited research has focused on the inner structure of the choroid due to the challenges in obtaining sufficient accurate label data, particularly for the choroidal vessels. Meanwhile, the existing direct choroidal vessel segmentation methods for the intelligent diagnosis of vascular assisted ophthalmic diseases are still unsatisfactory due to noise data, while the synergistic segmentation methods compromise vessel segmentation performance for the choroid layer segmentation tasks. Common cascaded structures grapple with error propagation during training. To address these challenges, we propose a cascade learning segmentation method for the inner vessel structures of the choroid in this paper. Specifically, we propose Transformer-Assisted Cascade Learning Network (TACLNet) for choroidal vessel segmentation, which comprises a two-stage training strategy: pre-training for choroid layer segmentation and joint training for choroid layer and choroidal vessel segmentation. We also enhance the skip connection structures by introducing a multi-scale subtraction connection module designated as MSC, capturing differential and detailed information simultaneously. Additionally, we implement an auxiliary Transformer branch named ATB to integrate global features into the segmentation process. Experimental results exhibit that our method achieves the state-of-the-art performance for choroidal vessel segmentation. Besides, we further validate the significant superiority of the proposed method for retinal fluid segmentation in optical coherence tomography (OCT) scans on a publicly available dataset. All these fully prove that our TACLNet contributes to the advancement of choroidal vessel segmentation and is of great significance for ophthalmic research and clinical application.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"23 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Transformer-Assisted Cascade Learning Network for Choroidal Vessel Segmentation\",\"authors\":\"Yang Wen, Yi-Lin Wu, Lei Bi, Wu-Zhen Shi, Xiao-Xiao Liu, Yu-Peng Xu, Xun Xu, Wen-Ming Cao, David Dagan Feng\",\"doi\":\"10.1007/s11390-024-3679-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a highly vascular eye part, the choroid is crucial in various eye disease diagnoses. However, limited research has focused on the inner structure of the choroid due to the challenges in obtaining sufficient accurate label data, particularly for the choroidal vessels. Meanwhile, the existing direct choroidal vessel segmentation methods for the intelligent diagnosis of vascular assisted ophthalmic diseases are still unsatisfactory due to noise data, while the synergistic segmentation methods compromise vessel segmentation performance for the choroid layer segmentation tasks. Common cascaded structures grapple with error propagation during training. To address these challenges, we propose a cascade learning segmentation method for the inner vessel structures of the choroid in this paper. Specifically, we propose Transformer-Assisted Cascade Learning Network (TACLNet) for choroidal vessel segmentation, which comprises a two-stage training strategy: pre-training for choroid layer segmentation and joint training for choroid layer and choroidal vessel segmentation. We also enhance the skip connection structures by introducing a multi-scale subtraction connection module designated as MSC, capturing differential and detailed information simultaneously. Additionally, we implement an auxiliary Transformer branch named ATB to integrate global features into the segmentation process. Experimental results exhibit that our method achieves the state-of-the-art performance for choroidal vessel segmentation. Besides, we further validate the significant superiority of the proposed method for retinal fluid segmentation in optical coherence tomography (OCT) scans on a publicly available dataset. All these fully prove that our TACLNet contributes to the advancement of choroidal vessel segmentation and is of great significance for ophthalmic research and clinical application.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-024-3679-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-3679-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Transformer-Assisted Cascade Learning Network for Choroidal Vessel Segmentation
As a highly vascular eye part, the choroid is crucial in various eye disease diagnoses. However, limited research has focused on the inner structure of the choroid due to the challenges in obtaining sufficient accurate label data, particularly for the choroidal vessels. Meanwhile, the existing direct choroidal vessel segmentation methods for the intelligent diagnosis of vascular assisted ophthalmic diseases are still unsatisfactory due to noise data, while the synergistic segmentation methods compromise vessel segmentation performance for the choroid layer segmentation tasks. Common cascaded structures grapple with error propagation during training. To address these challenges, we propose a cascade learning segmentation method for the inner vessel structures of the choroid in this paper. Specifically, we propose Transformer-Assisted Cascade Learning Network (TACLNet) for choroidal vessel segmentation, which comprises a two-stage training strategy: pre-training for choroid layer segmentation and joint training for choroid layer and choroidal vessel segmentation. We also enhance the skip connection structures by introducing a multi-scale subtraction connection module designated as MSC, capturing differential and detailed information simultaneously. Additionally, we implement an auxiliary Transformer branch named ATB to integrate global features into the segmentation process. Experimental results exhibit that our method achieves the state-of-the-art performance for choroidal vessel segmentation. Besides, we further validate the significant superiority of the proposed method for retinal fluid segmentation in optical coherence tomography (OCT) scans on a publicly available dataset. All these fully prove that our TACLNet contributes to the advancement of choroidal vessel segmentation and is of great significance for ophthalmic research and clinical application.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas