Zi-Nuo Li, Xu-Hang Chen, Shu-Na Guo, Shu-Qiang Wang, Chi-Man Pun
{"title":"WavEnhancer:统一小波和变换器以增强图像效果","authors":"Zi-Nuo Li, Xu-Hang Chen, Shu-Na Guo, Shu-Qiang Wang, Chi-Man Pun","doi":"10.1007/s11390-024-3414-z","DOIUrl":null,"url":null,"abstract":"<p>Image enhancement is a widely used technique in digital image processing that aims to improve image aesthetics and visual quality. However, traditional methods of enhancement based on pixel-level or global-level modifications have limited effectiveness. Recently, as learning-based techniques gain popularity, various studies are now focusing on utilizing networks for image enhancement. However, these techniques often fail to optimize image frequency domains. This study addresses this gap by introducing a transformer-based model for improving images in the wavelet domain. The proposed model refines various frequency bands of an image and prioritizes local details and high-level features. Consequently, the proposed technique produces superior enhancement results. The proposed model’s performance was assessed through comprehensive benchmark evaluations, and the results suggest it outperforms the state-of-the-art techniques.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"33 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WavEnhancer: Unifying Wavelet and Transformer for Image Enhancement\",\"authors\":\"Zi-Nuo Li, Xu-Hang Chen, Shu-Na Guo, Shu-Qiang Wang, Chi-Man Pun\",\"doi\":\"10.1007/s11390-024-3414-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Image enhancement is a widely used technique in digital image processing that aims to improve image aesthetics and visual quality. However, traditional methods of enhancement based on pixel-level or global-level modifications have limited effectiveness. Recently, as learning-based techniques gain popularity, various studies are now focusing on utilizing networks for image enhancement. However, these techniques often fail to optimize image frequency domains. This study addresses this gap by introducing a transformer-based model for improving images in the wavelet domain. The proposed model refines various frequency bands of an image and prioritizes local details and high-level features. Consequently, the proposed technique produces superior enhancement results. The proposed model’s performance was assessed through comprehensive benchmark evaluations, and the results suggest it outperforms the state-of-the-art techniques.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-024-3414-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-3414-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
WavEnhancer: Unifying Wavelet and Transformer for Image Enhancement
Image enhancement is a widely used technique in digital image processing that aims to improve image aesthetics and visual quality. However, traditional methods of enhancement based on pixel-level or global-level modifications have limited effectiveness. Recently, as learning-based techniques gain popularity, various studies are now focusing on utilizing networks for image enhancement. However, these techniques often fail to optimize image frequency domains. This study addresses this gap by introducing a transformer-based model for improving images in the wavelet domain. The proposed model refines various frequency bands of an image and prioritizes local details and high-level features. Consequently, the proposed technique produces superior enhancement results. The proposed model’s performance was assessed through comprehensive benchmark evaluations, and the results suggest it outperforms the state-of-the-art techniques.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas