关于洗牌和分裂自动机

Ignacio Mollo Cunningham
{"title":"关于洗牌和分裂自动机","authors":"Ignacio Mollo Cunningham","doi":"arxiv-2407.02660","DOIUrl":null,"url":null,"abstract":"We consider a class of finite state three-tape transducers which models the\noperation of shuffling and splitting words. We present them as automata over\nthe so-called Shuffling Monoid. These automata can be seen as either shufflers\nor splitters interchangeably. We prove that functionality is decidable for\nsplitters, and we also show that the equivalence between functional splitters\nis decidable. Moreover, in the deterministic case, the algorithm for\nequivalence is polynomial on the number of states of the splitter.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Shuffling and Splitting Automata\",\"authors\":\"Ignacio Mollo Cunningham\",\"doi\":\"arxiv-2407.02660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of finite state three-tape transducers which models the\\noperation of shuffling and splitting words. We present them as automata over\\nthe so-called Shuffling Monoid. These automata can be seen as either shufflers\\nor splitters interchangeably. We prove that functionality is decidable for\\nsplitters, and we also show that the equivalence between functional splitters\\nis decidable. Moreover, in the deterministic case, the algorithm for\\nequivalence is polynomial on the number of states of the splitter.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一类有限状态三带转换器,它模拟了洗牌和拆字的操作。我们将它们作为所谓的 "洗牌单体"(Shuffling Monoid)上的自动机来介绍。这些自动机可以被看作是洗牌器,也可以被看作是拆字器。我们证明了分词器的功能性是可解的,还证明了功能性分词器之间的等价性是可解的。此外,在确定性情况下,等价性的算法是分裂器状态数的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Shuffling and Splitting Automata
We consider a class of finite state three-tape transducers which models the operation of shuffling and splitting words. We present them as automata over the so-called Shuffling Monoid. These automata can be seen as either shufflers or splitters interchangeably. We prove that functionality is decidable for splitters, and we also show that the equivalence between functional splitters is decidable. Moreover, in the deterministic case, the algorithm for equivalence is polynomial on the number of states of the splitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信