与凸值 m 映射相关的集值动力学

IF 0.9 3区 数学 Q2 MATHEMATICS
Hamid Khodaei
{"title":"与凸值 m 映射相关的集值动力学","authors":"Hamid Khodaei","doi":"10.1007/s00010-024-01103-y","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study the set-valued dynamics related to some Euler-Lagrange type functional equations of convex-valued <i>m</i>-mappings. We deal with perturbations of these equations. In order to do this, we use the Banach contraction principle and the Hausdorff distance. Several outcomes on approximate solutions of a few important classic equations are discussed and some applications are given.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"83 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Set-valued dynamics related to convex-valued m-mappings\",\"authors\":\"Hamid Khodaei\",\"doi\":\"10.1007/s00010-024-01103-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study the set-valued dynamics related to some Euler-Lagrange type functional equations of convex-valued <i>m</i>-mappings. We deal with perturbations of these equations. In order to do this, we use the Banach contraction principle and the Hausdorff distance. Several outcomes on approximate solutions of a few important classic equations are discussed and some applications are given.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01103-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01103-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了与一些凸值 m 映射的欧拉-拉格朗日型函数方程相关的集值动力学。我们处理这些方程的扰动。为此,我们使用了巴拿赫收缩原理和豪斯多夫距离。我们讨论了几个重要经典方程近似解的结果,并给出了一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set-valued dynamics related to convex-valued m-mappings

In this article, we study the set-valued dynamics related to some Euler-Lagrange type functional equations of convex-valued m-mappings. We deal with perturbations of these equations. In order to do this, we use the Banach contraction principle and the Hausdorff distance. Several outcomes on approximate solutions of a few important classic equations are discussed and some applications are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信