{"title":"基于神经网络辅助快速迭代滤波法的透明光学元件快速偏转测量中的条纹分离技术","authors":"Ting Chen, Pei-De Yang, Xiang-Chao Zhang, Wei Lang, Yu-Nuo Chen, Min Xu","doi":"10.1007/s40436-024-00509-w","DOIUrl":null,"url":null,"abstract":"<p>Transparent optical elements play a significant role in optical imaging and sensing, and the form qualities of these elements are critical to the functionalities of opto-electrical equipment. Therefore, rapid measurement of advanced transparent optical devices is urgently needed. Deflectometry, as a commonly used measurement method, has broad applications in form measurement. However, there are some challenges in the reflective deflectometric measurement of transparent elements, such as fringe superposition, low reflectivity, and non-uniform backgrounds, which severely affect the measurement accuracy. To address these issues, a single-frame fringe separation method is proposed for the deflectometric measurement of transparent elements. A fast iterative filtering method is utilized for coarse fringe separation and a convolutional neural network is adopted to solve the information leakage and incomplete fringe separation. The construction of the neural network involves improving and refining the filtering method to achieve precise separation of fringes. The proposed method achieves fringe separation and forms reconstruction of the upper and lower surfaces. Through simulations and experiments, the effectiveness and robustness of the proposed method are demonstrated, and the measurement accuracy can achieve 65 nm root-of-mean-squared-error (RMSE).</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of fringe patterns in fast deflectometric measurement of transparent optical elements based on neural network-assisted fast iterative filtering method\",\"authors\":\"Ting Chen, Pei-De Yang, Xiang-Chao Zhang, Wei Lang, Yu-Nuo Chen, Min Xu\",\"doi\":\"10.1007/s40436-024-00509-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transparent optical elements play a significant role in optical imaging and sensing, and the form qualities of these elements are critical to the functionalities of opto-electrical equipment. Therefore, rapid measurement of advanced transparent optical devices is urgently needed. Deflectometry, as a commonly used measurement method, has broad applications in form measurement. However, there are some challenges in the reflective deflectometric measurement of transparent elements, such as fringe superposition, low reflectivity, and non-uniform backgrounds, which severely affect the measurement accuracy. To address these issues, a single-frame fringe separation method is proposed for the deflectometric measurement of transparent elements. A fast iterative filtering method is utilized for coarse fringe separation and a convolutional neural network is adopted to solve the information leakage and incomplete fringe separation. The construction of the neural network involves improving and refining the filtering method to achieve precise separation of fringes. The proposed method achieves fringe separation and forms reconstruction of the upper and lower surfaces. Through simulations and experiments, the effectiveness and robustness of the proposed method are demonstrated, and the measurement accuracy can achieve 65 nm root-of-mean-squared-error (RMSE).</p>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40436-024-00509-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00509-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Separation of fringe patterns in fast deflectometric measurement of transparent optical elements based on neural network-assisted fast iterative filtering method
Transparent optical elements play a significant role in optical imaging and sensing, and the form qualities of these elements are critical to the functionalities of opto-electrical equipment. Therefore, rapid measurement of advanced transparent optical devices is urgently needed. Deflectometry, as a commonly used measurement method, has broad applications in form measurement. However, there are some challenges in the reflective deflectometric measurement of transparent elements, such as fringe superposition, low reflectivity, and non-uniform backgrounds, which severely affect the measurement accuracy. To address these issues, a single-frame fringe separation method is proposed for the deflectometric measurement of transparent elements. A fast iterative filtering method is utilized for coarse fringe separation and a convolutional neural network is adopted to solve the information leakage and incomplete fringe separation. The construction of the neural network involves improving and refining the filtering method to achieve precise separation of fringes. The proposed method achieves fringe separation and forms reconstruction of the upper and lower surfaces. Through simulations and experiments, the effectiveness and robustness of the proposed method are demonstrated, and the measurement accuracy can achieve 65 nm root-of-mean-squared-error (RMSE).
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.