Jan Schipper, Stefan Melchin, Julius Metzdorf, David Bach, Miriam Fehrenbach, Konrad Löwe, Hugo Vieyra, Frank Kühnemann, Jürgen Wöllenstein and Kilian Bartholomé
{"title":"引入新的循环自热方法,对 LaFe11,4Mn0,35Si1,26Hx 热量材料的效率进行实验定量","authors":"Jan Schipper, Stefan Melchin, Julius Metzdorf, David Bach, Miriam Fehrenbach, Konrad Löwe, Hugo Vieyra, Frank Kühnemann, Jürgen Wöllenstein and Kilian Bartholomé","doi":"10.1088/2515-7655/ad5b89","DOIUrl":null,"url":null,"abstract":"Hysteresis and the associated production of dissipative heat during first order phase transitions are often major contributors to thermodynamic losses in caloric heat pumps. The figure of merit (FOM), defined as the ratio of adiabatic temperature change and the thermal hysteresis of the caloric material, quantifies these losses, and can also be used to calculate the maximum potential efficiency of a caloric material in a thermodynamic cycle. This paper presents a novel and simple method to determine the heat loss and thus the FOM can be determined from self-heating of the caloric material during repeated field cycling. As this method mainly requires temperature readings and the ability to cycle the caloric material in a field, most test setups that directly measure the adiabatic temperature change should already be able to perform dissipative heat measurements with this technique. With the presented method, we were able to determine the efficiency of a commercial LaFeSiMnH-sample with a high degree of accuracy. A maximum FOM of was determined for the selected LaFeSiMnH-sample. In an ideal cascaded magneto caloric system, this corresponds to a system efficiency of 90%, with an ideal heat regeneration this could theoretically even be increased to 97%.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"15 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction of novel method of cyclic self-heating for the experimental quantification of the efficiency of caloric materials shown for LaFe11,4Mn0,35Si1,26Hx\",\"authors\":\"Jan Schipper, Stefan Melchin, Julius Metzdorf, David Bach, Miriam Fehrenbach, Konrad Löwe, Hugo Vieyra, Frank Kühnemann, Jürgen Wöllenstein and Kilian Bartholomé\",\"doi\":\"10.1088/2515-7655/ad5b89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hysteresis and the associated production of dissipative heat during first order phase transitions are often major contributors to thermodynamic losses in caloric heat pumps. The figure of merit (FOM), defined as the ratio of adiabatic temperature change and the thermal hysteresis of the caloric material, quantifies these losses, and can also be used to calculate the maximum potential efficiency of a caloric material in a thermodynamic cycle. This paper presents a novel and simple method to determine the heat loss and thus the FOM can be determined from self-heating of the caloric material during repeated field cycling. As this method mainly requires temperature readings and the ability to cycle the caloric material in a field, most test setups that directly measure the adiabatic temperature change should already be able to perform dissipative heat measurements with this technique. With the presented method, we were able to determine the efficiency of a commercial LaFeSiMnH-sample with a high degree of accuracy. A maximum FOM of was determined for the selected LaFeSiMnH-sample. In an ideal cascaded magneto caloric system, this corresponds to a system efficiency of 90%, with an ideal heat regeneration this could theoretically even be increased to 97%.\",\"PeriodicalId\":48500,\"journal\":{\"name\":\"Journal of Physics-Energy\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7655/ad5b89\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad5b89","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Introduction of novel method of cyclic self-heating for the experimental quantification of the efficiency of caloric materials shown for LaFe11,4Mn0,35Si1,26Hx
Hysteresis and the associated production of dissipative heat during first order phase transitions are often major contributors to thermodynamic losses in caloric heat pumps. The figure of merit (FOM), defined as the ratio of adiabatic temperature change and the thermal hysteresis of the caloric material, quantifies these losses, and can also be used to calculate the maximum potential efficiency of a caloric material in a thermodynamic cycle. This paper presents a novel and simple method to determine the heat loss and thus the FOM can be determined from self-heating of the caloric material during repeated field cycling. As this method mainly requires temperature readings and the ability to cycle the caloric material in a field, most test setups that directly measure the adiabatic temperature change should already be able to perform dissipative heat measurements with this technique. With the presented method, we were able to determine the efficiency of a commercial LaFeSiMnH-sample with a high degree of accuracy. A maximum FOM of was determined for the selected LaFeSiMnH-sample. In an ideal cascaded magneto caloric system, this corresponds to a system efficiency of 90%, with an ideal heat regeneration this could theoretically even be increased to 97%.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.