{"title":"识别技术债务的局部和全局可解释性","authors":"Dimitrios Tsoukalas;Nikolaos Mittas;Elvira-Maria Arvanitou;Apostolos Ampatzoglou;Alexander Chatzigeorgiou;Dionysios Kehagias","doi":"10.1109/TSE.2024.3422427","DOIUrl":null,"url":null,"abstract":"In recent years, we have witnessed an important increase in research focusing on how machine learning (ML) techniques can be used for software quality assessment and improvement. However, the derived methodologies and tools lack transparency, due to the black-box nature of the employed machine learning models, leading to decreased trust in their results. To address this shortcoming, in this paper we extend the state-of-the-art and -practice by building explainable AI models on top of machine learning ones, to interpret the factors (i.e. software metrics) that constitute a module as in risk of having high technical debt (HIGH TD), to obtain thresholds for metric scores that are alerting for poor maintainability, and finally, we dig further to achieve local interpretation that explains the specific problems of each module, pinpointing to specific opportunities for improvement during TD management. To achieve this goal, we have developed project-specific classifiers (characterizing modules as HIGH and NOT-HIGH TD) for 21 open-source projects, and we explain their rationale using the SHapley Additive exPlanation (SHAP) analysis. Based on our analysis, complexity, comments ratio, cohesion, nesting of control flow statements, coupling, refactoring activity, and code churn are the most important reasons for characterizing classes as in HIGH TD risk. The analysis is complemented with global and local means of interpretation, such as metric thresholds and case-by-case reasoning for characterizing a class as in-risk of having HIGH TD. The results of the study are compared against the state-of-the-art and are interpreted from the point of view of both researchers and practitioners.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"50 8","pages":"2110-2123"},"PeriodicalIF":6.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local and Global Explainability for Technical Debt Identification\",\"authors\":\"Dimitrios Tsoukalas;Nikolaos Mittas;Elvira-Maria Arvanitou;Apostolos Ampatzoglou;Alexander Chatzigeorgiou;Dionysios Kehagias\",\"doi\":\"10.1109/TSE.2024.3422427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, we have witnessed an important increase in research focusing on how machine learning (ML) techniques can be used for software quality assessment and improvement. However, the derived methodologies and tools lack transparency, due to the black-box nature of the employed machine learning models, leading to decreased trust in their results. To address this shortcoming, in this paper we extend the state-of-the-art and -practice by building explainable AI models on top of machine learning ones, to interpret the factors (i.e. software metrics) that constitute a module as in risk of having high technical debt (HIGH TD), to obtain thresholds for metric scores that are alerting for poor maintainability, and finally, we dig further to achieve local interpretation that explains the specific problems of each module, pinpointing to specific opportunities for improvement during TD management. To achieve this goal, we have developed project-specific classifiers (characterizing modules as HIGH and NOT-HIGH TD) for 21 open-source projects, and we explain their rationale using the SHapley Additive exPlanation (SHAP) analysis. Based on our analysis, complexity, comments ratio, cohesion, nesting of control flow statements, coupling, refactoring activity, and code churn are the most important reasons for characterizing classes as in HIGH TD risk. The analysis is complemented with global and local means of interpretation, such as metric thresholds and case-by-case reasoning for characterizing a class as in-risk of having HIGH TD. The results of the study are compared against the state-of-the-art and are interpreted from the point of view of both researchers and practitioners.\",\"PeriodicalId\":13324,\"journal\":{\"name\":\"IEEE Transactions on Software Engineering\",\"volume\":\"50 8\",\"pages\":\"2110-2123\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10586898/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10586898/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Local and Global Explainability for Technical Debt Identification
In recent years, we have witnessed an important increase in research focusing on how machine learning (ML) techniques can be used for software quality assessment and improvement. However, the derived methodologies and tools lack transparency, due to the black-box nature of the employed machine learning models, leading to decreased trust in their results. To address this shortcoming, in this paper we extend the state-of-the-art and -practice by building explainable AI models on top of machine learning ones, to interpret the factors (i.e. software metrics) that constitute a module as in risk of having high technical debt (HIGH TD), to obtain thresholds for metric scores that are alerting for poor maintainability, and finally, we dig further to achieve local interpretation that explains the specific problems of each module, pinpointing to specific opportunities for improvement during TD management. To achieve this goal, we have developed project-specific classifiers (characterizing modules as HIGH and NOT-HIGH TD) for 21 open-source projects, and we explain their rationale using the SHapley Additive exPlanation (SHAP) analysis. Based on our analysis, complexity, comments ratio, cohesion, nesting of control flow statements, coupling, refactoring activity, and code churn are the most important reasons for characterizing classes as in HIGH TD risk. The analysis is complemented with global and local means of interpretation, such as metric thresholds and case-by-case reasoning for characterizing a class as in-risk of having HIGH TD. The results of the study are compared against the state-of-the-art and are interpreted from the point of view of both researchers and practitioners.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.