凸最小化问题混合高阶方法的离散弱对偶性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Ngoc Tien Tran
{"title":"凸最小化问题混合高阶方法的离散弱对偶性","authors":"Ngoc Tien Tran","doi":"10.1137/23m1594534","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1492-1514, August 2024. <br/> Abstract. This paper derives a discrete dual problem for a prototypical hybrid high-order method for convex minimization problems. The discrete primal and dual problem satisfy a weak convex duality that leads to a priori error estimates with convergence rates under additional smoothness assumptions. This duality holds for general polyhedral meshes and arbitrary polynomial degrees of the discretization. A novel postprocessing is proposed and allows for a posteriori error estimates on regular triangulations into simplices using primal-dual techniques. This motivates an adaptive mesh-refining algorithm, which performs better compared to uniform mesh refinements.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"53 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Weak Duality of Hybrid High-Order Methods for Convex Minimization Problems\",\"authors\":\"Ngoc Tien Tran\",\"doi\":\"10.1137/23m1594534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1492-1514, August 2024. <br/> Abstract. This paper derives a discrete dual problem for a prototypical hybrid high-order method for convex minimization problems. The discrete primal and dual problem satisfy a weak convex duality that leads to a priori error estimates with convergence rates under additional smoothness assumptions. This duality holds for general polyhedral meshes and arbitrary polynomial degrees of the discretization. A novel postprocessing is proposed and allows for a posteriori error estimates on regular triangulations into simplices using primal-dual techniques. This motivates an adaptive mesh-refining algorithm, which performs better compared to uniform mesh refinements.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1594534\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1594534","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 4 期第 1492-1514 页,2024 年 8 月。 摘要本文推导了凸最小化问题的典型混合高阶方法的离散对偶问题。离散主问题和对偶问题满足弱凸对偶性,在额外的平滑性假设条件下可得到具有收敛率的先验误差估计。这种对偶性适用于一般多面体网格和任意多项式离散度。本文提出了一种新颖的后处理方法,并允许使用初等二元技术对规则三角形简图进行后验误差估计。这激发了一种自适应网格细化算法,与统一网格细化相比,该算法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Weak Duality of Hybrid High-Order Methods for Convex Minimization Problems
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1492-1514, August 2024.
Abstract. This paper derives a discrete dual problem for a prototypical hybrid high-order method for convex minimization problems. The discrete primal and dual problem satisfy a weak convex duality that leads to a priori error estimates with convergence rates under additional smoothness assumptions. This duality holds for general polyhedral meshes and arbitrary polynomial degrees of the discretization. A novel postprocessing is proposed and allows for a posteriori error estimates on regular triangulations into simplices using primal-dual techniques. This motivates an adaptive mesh-refining algorithm, which performs better compared to uniform mesh refinements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信