Thulasika Senthakumaran, Tone M Tannæs, Aina E F Moen, Stephan A Brackmann, David Jahanlu, Trine B Rounge, Vahid Bemanian, Hege S Tunsjø
{"title":"利用新一代测序技术和 19 种新建立的 qPCR 检测方法检测粪便样本中与结直肠癌相关的细菌分类群。","authors":"Thulasika Senthakumaran, Tone M Tannæs, Aina E F Moen, Stephan A Brackmann, David Jahanlu, Trine B Rounge, Vahid Bemanian, Hege S Tunsjø","doi":"10.1002/1878-0261.13700","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously identified increased levels of distinct bacterial taxa within mucosal biopsies from colorectal cancer (CRC) patients. Following prior research, the aim of this study was to investigate the detection of the same CRC-associated bacteria in fecal samples and to evaluate the suitability of fecal samples as a non-invasive material for the detection of CRC-associated bacteria. Next-generation sequencing (NGS) of the 16S ribosomal RNA (rRNA) V4 region was performed to evaluate the detection of the CRC-associated bacteria in the fecal microbiota of cancer patients, patients with adenomatous polyp and healthy controls. Furthermore, 19 novel species-specific quantitative PCR (qPCR) assays were established to detect the CRC-associated bacteria. Approximately, 75% of the bacterial taxa identified in biopsies were reflected in fecal samples. NGS failed to detect low-abundance CRC-associated taxa in fecal samples, whereas qPCR exhibited high sensitivity and specificity in identifying all targeted taxa. Comparison of fecal microbial composition between the different patient groups showed enrichment of Fusobacterium nucleatum, Parvimonas micra, and Gemella morbillorum in cancer patients. Our findings suggest that low-abundance mucosa-associated bacteria can be detected in fecal samples using sensitive qPCR assays.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"412-429"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of colorectal-cancer-associated bacterial taxa in fecal samples using next-generation sequencing and 19 newly established qPCR assays.\",\"authors\":\"Thulasika Senthakumaran, Tone M Tannæs, Aina E F Moen, Stephan A Brackmann, David Jahanlu, Trine B Rounge, Vahid Bemanian, Hege S Tunsjø\",\"doi\":\"10.1002/1878-0261.13700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have previously identified increased levels of distinct bacterial taxa within mucosal biopsies from colorectal cancer (CRC) patients. Following prior research, the aim of this study was to investigate the detection of the same CRC-associated bacteria in fecal samples and to evaluate the suitability of fecal samples as a non-invasive material for the detection of CRC-associated bacteria. Next-generation sequencing (NGS) of the 16S ribosomal RNA (rRNA) V4 region was performed to evaluate the detection of the CRC-associated bacteria in the fecal microbiota of cancer patients, patients with adenomatous polyp and healthy controls. Furthermore, 19 novel species-specific quantitative PCR (qPCR) assays were established to detect the CRC-associated bacteria. Approximately, 75% of the bacterial taxa identified in biopsies were reflected in fecal samples. NGS failed to detect low-abundance CRC-associated taxa in fecal samples, whereas qPCR exhibited high sensitivity and specificity in identifying all targeted taxa. Comparison of fecal microbial composition between the different patient groups showed enrichment of Fusobacterium nucleatum, Parvimonas micra, and Gemella morbillorum in cancer patients. Our findings suggest that low-abundance mucosa-associated bacteria can be detected in fecal samples using sensitive qPCR assays.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"412-429\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13700\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13700","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Detection of colorectal-cancer-associated bacterial taxa in fecal samples using next-generation sequencing and 19 newly established qPCR assays.
We have previously identified increased levels of distinct bacterial taxa within mucosal biopsies from colorectal cancer (CRC) patients. Following prior research, the aim of this study was to investigate the detection of the same CRC-associated bacteria in fecal samples and to evaluate the suitability of fecal samples as a non-invasive material for the detection of CRC-associated bacteria. Next-generation sequencing (NGS) of the 16S ribosomal RNA (rRNA) V4 region was performed to evaluate the detection of the CRC-associated bacteria in the fecal microbiota of cancer patients, patients with adenomatous polyp and healthy controls. Furthermore, 19 novel species-specific quantitative PCR (qPCR) assays were established to detect the CRC-associated bacteria. Approximately, 75% of the bacterial taxa identified in biopsies were reflected in fecal samples. NGS failed to detect low-abundance CRC-associated taxa in fecal samples, whereas qPCR exhibited high sensitivity and specificity in identifying all targeted taxa. Comparison of fecal microbial composition between the different patient groups showed enrichment of Fusobacterium nucleatum, Parvimonas micra, and Gemella morbillorum in cancer patients. Our findings suggest that low-abundance mucosa-associated bacteria can be detected in fecal samples using sensitive qPCR assays.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.