LinearAlifold:RNA 对齐的线性时间共识结构预测

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"LinearAlifold:RNA 对齐的线性时间共识结构预测","authors":"","doi":"10.1016/j.jmb.2024.168694","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting the consensus structure of a set of aligned RNA homologs is a convenient method to find conserved structures in an RNA genome, which has many applications including viral diagnostics and therapeutics. However, the most commonly used tool for this task, RNAalifold, is prohibitively slow for long sequences, due to a cubic scaling with the sequence length, taking over a day on 400 SARS-CoV-2 and SARS-related genomes (<span><math><mrow><mo>∼</mo></mrow></math></span>30,000<em>nt</em>). We present LinearAlifold, a much faster alternative that scales linearly with both the sequence length and the number of sequences, based on our work LinearFold that folds a single RNA in linear time. Our work is orders of magnitude faster than RNAalifold (0.7 h on the above 400 genomes, or <span><math><mrow><mo>∼</mo><mn>36</mn><mo>×</mo></mrow></math></span> speedup) and achieves higher accuracies when compared to a database of known structures. More interestingly, LinearAlifold’s prediction on SARS-CoV-2 correlates well with experimentally determined structures, substantially outperforming RNAalifold. Finally, LinearAlifold supports two energy models (Vienna and BL*) and four modes: minimum free energy (MFE), maximum expected accuracy (MEA), ThreshKnot, and stochastic sampling, each of which takes under an hour for hundreds of SARS-CoV variants. Our resource is at:</p><p><span><span>https://github.com/LinearFold/LinearAlifold</span><svg><path></path></svg></span> (code) and <span><span>http://linearfold.org/linear-alifold</span><svg><path></path></svg></span> (server).</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168694"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624002961/pdfft?md5=00f1e9455bb03b8e6b3ad40c8ff311e7&pid=1-s2.0-S0022283624002961-main.pdf","citationCount":"0","resultStr":"{\"title\":\"LinearAlifold: Linear-time consensus structure prediction for RNA alignments\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting the consensus structure of a set of aligned RNA homologs is a convenient method to find conserved structures in an RNA genome, which has many applications including viral diagnostics and therapeutics. However, the most commonly used tool for this task, RNAalifold, is prohibitively slow for long sequences, due to a cubic scaling with the sequence length, taking over a day on 400 SARS-CoV-2 and SARS-related genomes (<span><math><mrow><mo>∼</mo></mrow></math></span>30,000<em>nt</em>). We present LinearAlifold, a much faster alternative that scales linearly with both the sequence length and the number of sequences, based on our work LinearFold that folds a single RNA in linear time. Our work is orders of magnitude faster than RNAalifold (0.7 h on the above 400 genomes, or <span><math><mrow><mo>∼</mo><mn>36</mn><mo>×</mo></mrow></math></span> speedup) and achieves higher accuracies when compared to a database of known structures. More interestingly, LinearAlifold’s prediction on SARS-CoV-2 correlates well with experimentally determined structures, substantially outperforming RNAalifold. Finally, LinearAlifold supports two energy models (Vienna and BL*) and four modes: minimum free energy (MFE), maximum expected accuracy (MEA), ThreshKnot, and stochastic sampling, each of which takes under an hour for hundreds of SARS-CoV variants. Our resource is at:</p><p><span><span>https://github.com/LinearFold/LinearAlifold</span><svg><path></path></svg></span> (code) and <span><span>http://linearfold.org/linear-alifold</span><svg><path></path></svg></span> (server).</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"436 17\",\"pages\":\"Article 168694\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624002961/pdfft?md5=00f1e9455bb03b8e6b3ad40c8ff311e7&pid=1-s2.0-S0022283624002961-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624002961\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624002961","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

预测一组对齐的 RNA 同源物的共识结构是发现 RNA 基因组中保守结构的一种便捷方法,它在病毒诊断和治疗等方面有很多应用。然而,最常用的工具 RNAalifold 在处理长序列时,由于序列长度呈立方缩放,速度慢得令人望而却步,处理 400 个 SARS-CoV-2 和 SARS 相关基因组(∼30,000nt)需要花费一天多的时间。我们提出的 LinearAlifold 是一种更快的替代方法,它与序列长度和序列数量成线性比例,以我们在线性时间内折叠单个 RNA 的工作 LinearFold 为基础。我们的工作比 RNAalifold 快几个数量级(在上述 400 个基因组上只需 0.7 个小时,即速度提高了 36 倍),而且与已知结构数据库相比,精度更高。更有趣的是,LinearAlifold 对 SARS-CoV-2 的预测与实验确定的结构有很好的相关性,大大超过了 RNAalifold。最后,LinearAlifold 支持两种能量模型(Vienna 和 BL*)和四种模式:最小自由能 (MFE)、最大预期准确度 (MEA)、ThreshKnot 和随机抽样,其中每种模式对数百种 SARS-CoV 变体的预测时间都在一小时以内。我们的资源位于:https://github.com/LinearFold/LinearAlifold(代码)和 http://linearfold.org/linear-alifold(服务器)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LinearAlifold: Linear-time consensus structure prediction for RNA alignments

Predicting the consensus structure of a set of aligned RNA homologs is a convenient method to find conserved structures in an RNA genome, which has many applications including viral diagnostics and therapeutics. However, the most commonly used tool for this task, RNAalifold, is prohibitively slow for long sequences, due to a cubic scaling with the sequence length, taking over a day on 400 SARS-CoV-2 and SARS-related genomes (30,000nt). We present LinearAlifold, a much faster alternative that scales linearly with both the sequence length and the number of sequences, based on our work LinearFold that folds a single RNA in linear time. Our work is orders of magnitude faster than RNAalifold (0.7 h on the above 400 genomes, or 36× speedup) and achieves higher accuracies when compared to a database of known structures. More interestingly, LinearAlifold’s prediction on SARS-CoV-2 correlates well with experimentally determined structures, substantially outperforming RNAalifold. Finally, LinearAlifold supports two energy models (Vienna and BL*) and four modes: minimum free energy (MFE), maximum expected accuracy (MEA), ThreshKnot, and stochastic sampling, each of which takes under an hour for hundreds of SARS-CoV variants. Our resource is at:

https://github.com/LinearFold/LinearAlifold (code) and http://linearfold.org/linear-alifold (server).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信