Yongge Liu , Jianxin Liu , Wei Jia , Yajie Bai , Jian Hou , Hongzhi Xu , Ermeng Zhao , Litao Chen , Tiankui Guo , Jiayuan He , Le Zhang , Evgeny Chuvilin
{"title":"通过径向井减压开发含水层的数值模拟","authors":"Yongge Liu , Jianxin Liu , Wei Jia , Yajie Bai , Jian Hou , Hongzhi Xu , Ermeng Zhao , Litao Chen , Tiankui Guo , Jiayuan He , Le Zhang , Evgeny Chuvilin","doi":"10.1016/j.ngib.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>A perpendicular bisector unstructured grid was used for meshing a model with radial wells, and the non-orthogonal correction of the flux calculation was implemented in the Tough+Hydrate software. A numerical simulation model was established based on the geological parameters of hydrate-bearing layers (HBLs) in the Shenhu area of the South China Sea. Gas and water production from the HBL, developed through depressurization of radial wells, was studied, and factors influencing gas production were analyzed. The findings indicate that employing radial wells in both hydrate and mixed layers significantly accelerated gas and water production in the HBL, facilitating rapid depressurization. Faster depressurization, in turn, promoted the dissociation of natural gas hydrate (NGH) and increased gas production. Cumulative gas production using radial wells in double layers increased by 110.03% compared with a horizontal well. In the later stage of depressurization development, NGHs in the mixed layer were almost entirely dissociated, whereas nearly three-quarters of NGHs in the hydrate layer remained undissociated. The combined method of depressurization and thermal stimulation is expected to further promote NGH dissociation and enhance gas production. Analysis of influencing factors revealed that higher gas production was associated with a greater number of laterals and larger lateral length, whereas the layout of the laterals had little effect on performance.</p></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352854024000366/pdfft?md5=ee06b46fd9617b5fe1785841a7ca0b4b&pid=1-s2.0-S2352854024000366-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of the development of hydrate-bearing layers by depressurization of radial wells\",\"authors\":\"Yongge Liu , Jianxin Liu , Wei Jia , Yajie Bai , Jian Hou , Hongzhi Xu , Ermeng Zhao , Litao Chen , Tiankui Guo , Jiayuan He , Le Zhang , Evgeny Chuvilin\",\"doi\":\"10.1016/j.ngib.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A perpendicular bisector unstructured grid was used for meshing a model with radial wells, and the non-orthogonal correction of the flux calculation was implemented in the Tough+Hydrate software. A numerical simulation model was established based on the geological parameters of hydrate-bearing layers (HBLs) in the Shenhu area of the South China Sea. Gas and water production from the HBL, developed through depressurization of radial wells, was studied, and factors influencing gas production were analyzed. The findings indicate that employing radial wells in both hydrate and mixed layers significantly accelerated gas and water production in the HBL, facilitating rapid depressurization. Faster depressurization, in turn, promoted the dissociation of natural gas hydrate (NGH) and increased gas production. Cumulative gas production using radial wells in double layers increased by 110.03% compared with a horizontal well. In the later stage of depressurization development, NGHs in the mixed layer were almost entirely dissociated, whereas nearly three-quarters of NGHs in the hydrate layer remained undissociated. The combined method of depressurization and thermal stimulation is expected to further promote NGH dissociation and enhance gas production. Analysis of influencing factors revealed that higher gas production was associated with a greater number of laterals and larger lateral length, whereas the layout of the laterals had little effect on performance.</p></div>\",\"PeriodicalId\":37116,\"journal\":{\"name\":\"Natural Gas Industry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352854024000366/pdfft?md5=ee06b46fd9617b5fe1785841a7ca0b4b&pid=1-s2.0-S2352854024000366-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Gas Industry B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352854024000366\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854024000366","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Numerical simulation of the development of hydrate-bearing layers by depressurization of radial wells
A perpendicular bisector unstructured grid was used for meshing a model with radial wells, and the non-orthogonal correction of the flux calculation was implemented in the Tough+Hydrate software. A numerical simulation model was established based on the geological parameters of hydrate-bearing layers (HBLs) in the Shenhu area of the South China Sea. Gas and water production from the HBL, developed through depressurization of radial wells, was studied, and factors influencing gas production were analyzed. The findings indicate that employing radial wells in both hydrate and mixed layers significantly accelerated gas and water production in the HBL, facilitating rapid depressurization. Faster depressurization, in turn, promoted the dissociation of natural gas hydrate (NGH) and increased gas production. Cumulative gas production using radial wells in double layers increased by 110.03% compared with a horizontal well. In the later stage of depressurization development, NGHs in the mixed layer were almost entirely dissociated, whereas nearly three-quarters of NGHs in the hydrate layer remained undissociated. The combined method of depressurization and thermal stimulation is expected to further promote NGH dissociation and enhance gas production. Analysis of influencing factors revealed that higher gas production was associated with a greater number of laterals and larger lateral length, whereas the layout of the laterals had little effect on performance.