四川盆地南部深层页岩气井套管变形与压裂裂缝防治措施及成果

IF 4.2 3区 工程技术 Q2 ENERGY & FUELS
Cheng Shen, Jianfa Wu, Bo Zeng, Yi Song, Zhiguang Yao, Yan Dong, Yurou Du
{"title":"四川盆地南部深层页岩气井套管变形与压裂裂缝防治措施及成果","authors":"Cheng Shen,&nbsp;Jianfa Wu,&nbsp;Bo Zeng,&nbsp;Yi Song,&nbsp;Zhiguang Yao,&nbsp;Yan Dong,&nbsp;Yurou Du","doi":"10.1016/j.ngib.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>Casing deformation and frac-hit pose significant challenges to the development of deep shale gas in southern Sichuan Basin. By analyzing the mechanism and main control factors of casing deformation and frac-hit, two kinds of risk assessment methods were defined, and the overall prevention and control concept and practice were formulated. The results show that initial stress, pore pressure, fault development and large scale fracturing in local block are the main factors leading to the deformation. The development of fracture through well group and uncontrolled fracturing fluid volume are the main factors leading to pressure channeling. Based on this, the risk classification technology of casing deformation and frac-hit is established, and the dual-optimal, dual-control concept and technology are formed. In terms of the prevention and control of casing deformation, the formation of small-diameter bridge plug fracturing, large section combined fracturing, glass beads cementing, single-well staggered and platform straddle fracturing mode, dual-dimension controlled and lift fracturing, hyperbolic diagnosis, etc. Frac-hit prevention and control formed pump sequence optimization mode, physical and chemical temporary plugging and other methods. The above technology achieved casing deformation rate decreased from 50.4% to 25.4%, frac-hit rate decreased from 58.6% to 33.9%, and the average well kilometer EUR reached 0.52–0.7 million square meters, an increase of 7.7% compared with the previous research, with remarkable results.</p></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352854024000391/pdfft?md5=39eb7112a23fa8550664f48fc150ffd7&pid=1-s2.0-S2352854024000391-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Measures and results of prevention and control on casing deformation and frac-hit in deep shale gas wells in southern Sichuan Basin\",\"authors\":\"Cheng Shen,&nbsp;Jianfa Wu,&nbsp;Bo Zeng,&nbsp;Yi Song,&nbsp;Zhiguang Yao,&nbsp;Yan Dong,&nbsp;Yurou Du\",\"doi\":\"10.1016/j.ngib.2024.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Casing deformation and frac-hit pose significant challenges to the development of deep shale gas in southern Sichuan Basin. By analyzing the mechanism and main control factors of casing deformation and frac-hit, two kinds of risk assessment methods were defined, and the overall prevention and control concept and practice were formulated. The results show that initial stress, pore pressure, fault development and large scale fracturing in local block are the main factors leading to the deformation. The development of fracture through well group and uncontrolled fracturing fluid volume are the main factors leading to pressure channeling. Based on this, the risk classification technology of casing deformation and frac-hit is established, and the dual-optimal, dual-control concept and technology are formed. In terms of the prevention and control of casing deformation, the formation of small-diameter bridge plug fracturing, large section combined fracturing, glass beads cementing, single-well staggered and platform straddle fracturing mode, dual-dimension controlled and lift fracturing, hyperbolic diagnosis, etc. Frac-hit prevention and control formed pump sequence optimization mode, physical and chemical temporary plugging and other methods. The above technology achieved casing deformation rate decreased from 50.4% to 25.4%, frac-hit rate decreased from 58.6% to 33.9%, and the average well kilometer EUR reached 0.52–0.7 million square meters, an increase of 7.7% compared with the previous research, with remarkable results.</p></div>\",\"PeriodicalId\":37116,\"journal\":{\"name\":\"Natural Gas Industry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352854024000391/pdfft?md5=39eb7112a23fa8550664f48fc150ffd7&pid=1-s2.0-S2352854024000391-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Gas Industry B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352854024000391\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854024000391","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

套管变形和压裂伤害是四川盆地南部深层页岩气开发面临的重大挑战。通过分析套管变形和压裂击穿的机理和主要控制因素,确定了两种风险评估方法,形成了整体防控理念和实践。结果表明,初始应力、孔隙压力、断层发育和局部区块大规模压裂是导致套管变形的主要因素。井组裂缝发育和压裂液量失控是导致压力通道的主要因素。在此基础上,建立了套管变形和压裂伤害风险分级技术,形成了双优双控理念和技术。在套管变形防控方面,形成了小口径桥塞压裂、大断面组合压裂、玻璃珠固井、单井交错与平台跨越压裂模式、双维控制与举升压裂、双曲线诊断等技术。压裂伤害防控形成了泵序优化模式、物理化学暂堵等方法。上述技术实现了套管变形率从50.4%下降到25.4%,压裂命中率从58.6%下降到33.9%,平均井公里EUR达到0.52-0.7万平方米,比前期研究提高了7.7%,效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measures and results of prevention and control on casing deformation and frac-hit in deep shale gas wells in southern Sichuan Basin

Casing deformation and frac-hit pose significant challenges to the development of deep shale gas in southern Sichuan Basin. By analyzing the mechanism and main control factors of casing deformation and frac-hit, two kinds of risk assessment methods were defined, and the overall prevention and control concept and practice were formulated. The results show that initial stress, pore pressure, fault development and large scale fracturing in local block are the main factors leading to the deformation. The development of fracture through well group and uncontrolled fracturing fluid volume are the main factors leading to pressure channeling. Based on this, the risk classification technology of casing deformation and frac-hit is established, and the dual-optimal, dual-control concept and technology are formed. In terms of the prevention and control of casing deformation, the formation of small-diameter bridge plug fracturing, large section combined fracturing, glass beads cementing, single-well staggered and platform straddle fracturing mode, dual-dimension controlled and lift fracturing, hyperbolic diagnosis, etc. Frac-hit prevention and control formed pump sequence optimization mode, physical and chemical temporary plugging and other methods. The above technology achieved casing deformation rate decreased from 50.4% to 25.4%, frac-hit rate decreased from 58.6% to 33.9%, and the average well kilometer EUR reached 0.52–0.7 million square meters, an increase of 7.7% compared with the previous research, with remarkable results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Gas Industry B
Natural Gas Industry B Earth and Planetary Sciences-Geology
CiteScore
5.80
自引率
6.10%
发文量
46
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信