{"title":"超越集中化:城市路网中的非合作式周边控制与扩展均值场强化学习","authors":"Xinghua Li , Xinyuan Zhang , Xinwu Qian , Cong Zhao , Yuntao Guo , Srinivas Peeta","doi":"10.1016/j.trb.2024.103016","DOIUrl":null,"url":null,"abstract":"<div><p>Perimeter control is a traffic management approach aimed at regulating vehicular accumulation within urban regional networks by managing flows on all border-crossing roads. Methods based on the macroscopic fundamental diagram (MFD) fall short in providing specific metering for individual roads. Recent advancements in the cell transmission model (CTM) have attempted to address this limitation but are hindered by their reliance on centralized control, which requires the availability of full information and authority over traffic generation sites. Our study proposes an innovative decentralized, game-theoretical framework for perimeter control to address these practical challenges. It is structured around two key groups of agents: perimeter agents, tasked with managing border roads, and interior agents, focused on traffic within generation sites. The framework also incorporates mechanisms for interactions between these agents and the road network, aiming to optimize their individual utilities. Additionally, we have developed a multi-agent reinforcement learning (RL) algorithm, extending the mean-field theory concept, to address the complexity of simultaneous learning by multiple agents.</p></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"186 ","pages":"Article 103016"},"PeriodicalIF":5.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond centralization: Non-cooperative perimeter control with extended mean-field reinforcement learning in urban road networks\",\"authors\":\"Xinghua Li , Xinyuan Zhang , Xinwu Qian , Cong Zhao , Yuntao Guo , Srinivas Peeta\",\"doi\":\"10.1016/j.trb.2024.103016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perimeter control is a traffic management approach aimed at regulating vehicular accumulation within urban regional networks by managing flows on all border-crossing roads. Methods based on the macroscopic fundamental diagram (MFD) fall short in providing specific metering for individual roads. Recent advancements in the cell transmission model (CTM) have attempted to address this limitation but are hindered by their reliance on centralized control, which requires the availability of full information and authority over traffic generation sites. Our study proposes an innovative decentralized, game-theoretical framework for perimeter control to address these practical challenges. It is structured around two key groups of agents: perimeter agents, tasked with managing border roads, and interior agents, focused on traffic within generation sites. The framework also incorporates mechanisms for interactions between these agents and the road network, aiming to optimize their individual utilities. Additionally, we have developed a multi-agent reinforcement learning (RL) algorithm, extending the mean-field theory concept, to address the complexity of simultaneous learning by multiple agents.</p></div>\",\"PeriodicalId\":54418,\"journal\":{\"name\":\"Transportation Research Part B-Methodological\",\"volume\":\"186 \",\"pages\":\"Article 103016\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part B-Methodological\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191261524001401\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524001401","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Beyond centralization: Non-cooperative perimeter control with extended mean-field reinforcement learning in urban road networks
Perimeter control is a traffic management approach aimed at regulating vehicular accumulation within urban regional networks by managing flows on all border-crossing roads. Methods based on the macroscopic fundamental diagram (MFD) fall short in providing specific metering for individual roads. Recent advancements in the cell transmission model (CTM) have attempted to address this limitation but are hindered by their reliance on centralized control, which requires the availability of full information and authority over traffic generation sites. Our study proposes an innovative decentralized, game-theoretical framework for perimeter control to address these practical challenges. It is structured around two key groups of agents: perimeter agents, tasked with managing border roads, and interior agents, focused on traffic within generation sites. The framework also incorporates mechanisms for interactions between these agents and the road network, aiming to optimize their individual utilities. Additionally, we have developed a multi-agent reinforcement learning (RL) algorithm, extending the mean-field theory concept, to address the complexity of simultaneous learning by multiple agents.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.