{"title":"具有非线性扩散和奇异敏感性的准线性趋化系统的有界性和渐近行为,用于治疗脱发症","authors":"Luxu Zhou, Fugeng Zeng, Lei Huang","doi":"10.1016/j.rinam.2024.100473","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with a three-component quasilinear chemotaxis system with nonlinear diffusion and singular sensitivity for alopecia areata <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∇</mo><mfenced><mrow><mfrac><mrow><mi>u</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∇</mo><mfenced><mrow><mfrac><mrow><mi>v</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>+</mo><mi>r</mi><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>v</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>−</mo><mi>w</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>associated with homogeneous Neumann boundary conditions in a convex smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. For <span><math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo></mrow></math></span> the parameters <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>r</mi></mrow></math></span> are positive and <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≥</mo><mn>2</mn></mrow></math></span>. The nonlinear diffusion functions <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> satisfy <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>⩾</mo><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup></mrow></math></span> for all <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. We delve into analyzing the global existence and boundedness of classical solutions for the aforementioned system under specific conditions. Additionally, in the scenario where <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>2</mn></mrow></math></span>, we develop a Lyapunov functional and scrutinize its temporal evolution to ascertain the asymptotic stability of the coexistence state.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100473"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000438/pdfft?md5=1c7b136d913734673823e8437fc9fa7f&pid=1-s2.0-S2590037424000438-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Boundedness and asymptotic behavior in a quasilinear chemotaxis system with nonlinear diffusion and singular sensitivity for alopecia areata\",\"authors\":\"Luxu Zhou, Fugeng Zeng, Lei Huang\",\"doi\":\"10.1016/j.rinam.2024.100473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with a three-component quasilinear chemotaxis system with nonlinear diffusion and singular sensitivity for alopecia areata <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∇</mo><mfenced><mrow><mfrac><mrow><mi>u</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∇</mo><mfenced><mrow><mfrac><mrow><mi>v</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>+</mo><mi>r</mi><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>v</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>−</mo><mi>w</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>associated with homogeneous Neumann boundary conditions in a convex smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. For <span><math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo></mrow></math></span> the parameters <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>r</mi></mrow></math></span> are positive and <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≥</mo><mn>2</mn></mrow></math></span>. The nonlinear diffusion functions <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> satisfy <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>⩾</mo><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup></mrow></math></span> for all <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. We delve into analyzing the global existence and boundedness of classical solutions for the aforementioned system under specific conditions. Additionally, in the scenario where <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>2</mn></mrow></math></span>, we develop a Lyapunov functional and scrutinize its temporal evolution to ascertain the asymptotic stability of the coexistence state.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100473\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000438/pdfft?md5=1c7b136d913734673823e8437fc9fa7f&pid=1-s2.0-S2590037424000438-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Boundedness and asymptotic behavior in a quasilinear chemotaxis system with nonlinear diffusion and singular sensitivity for alopecia areata
This paper is concerned with a three-component quasilinear chemotaxis system with nonlinear diffusion and singular sensitivity for alopecia areata associated with homogeneous Neumann boundary conditions in a convex smooth bounded domain . For the parameters are positive and . The nonlinear diffusion functions satisfy for all . We delve into analyzing the global existence and boundedness of classical solutions for the aforementioned system under specific conditions. Additionally, in the scenario where , we develop a Lyapunov functional and scrutinize its temporal evolution to ascertain the asymptotic stability of the coexistence state.