RadDeploy:将内部开发的软件和人工智能模型无缝集成到放射治疗工作流程中的框架

IF 3.4 Q2 ONCOLOGY
Mathis Ersted Rasmussen , Casper Dueholm Vestergaard , Jesper Folsted Kallehauge , Jintao Ren , Maiken Haislund Guldberg , Ole Nørrevang , Ulrik Vindelev Elstrøm , Stine Sofia Korreman
{"title":"RadDeploy:将内部开发的软件和人工智能模型无缝集成到放射治疗工作流程中的框架","authors":"Mathis Ersted Rasmussen ,&nbsp;Casper Dueholm Vestergaard ,&nbsp;Jesper Folsted Kallehauge ,&nbsp;Jintao Ren ,&nbsp;Maiken Haislund Guldberg ,&nbsp;Ole Nørrevang ,&nbsp;Ulrik Vindelev Elstrøm ,&nbsp;Stine Sofia Korreman","doi":"10.1016/j.phro.2024.100607","DOIUrl":null,"url":null,"abstract":"<div><p>The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000770/pdfft?md5=07c43a38a273144b17afee3cbb741fc9&pid=1-s2.0-S2405631624000770-main.pdf","citationCount":"0","resultStr":"{\"title\":\"RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows\",\"authors\":\"Mathis Ersted Rasmussen ,&nbsp;Casper Dueholm Vestergaard ,&nbsp;Jesper Folsted Kallehauge ,&nbsp;Jintao Ren ,&nbsp;Maiken Haislund Guldberg ,&nbsp;Ole Nørrevang ,&nbsp;Ulrik Vindelev Elstrøm ,&nbsp;Stine Sofia Korreman\",\"doi\":\"10.1016/j.phro.2024.100607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000770/pdfft?md5=07c43a38a273144b17afee3cbb741fc9&pid=1-s2.0-S2405631624000770-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自动化和人工智能(AI)在放射治疗中的应用和研究正以惊人的速度发展。然而,许多创新并未进入临床。其中一个技术原因可能是缺乏将此类软件部署到临床实践中的平台。我们建议将 RadDeploy 作为一个框架,将容器化软件集成到治疗计划系统之外的临床工作流程中。RadDeploy 支持将多个 DICOM 作为模型容器的输入,并能在 GPU 和计算机上异步运行模型容器。本技术说明总结了 RadDeploy 的内部工作原理,并演示了三个具有不同复杂性的用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows

The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信