列扩展拉丁超立方设计

Pub Date : 2024-06-27 DOI:10.1016/j.jspi.2024.106208
Qiao Wei, Jian-Feng Yang, Min-Qian Liu
{"title":"列扩展拉丁超立方设计","authors":"Qiao Wei,&nbsp;Jian-Feng Yang,&nbsp;Min-Qian Liu","doi":"10.1016/j.jspi.2024.106208","DOIUrl":null,"url":null,"abstract":"<div><p>Maximin distance designs and orthogonal designs are extensively applied in computer experiments, but the construction of such designs is challenging, especially under the maximin distance criterion. In this paper, by adding columns to a fold-over optimal maximin <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-distance Latin hypercube design (LHD), we construct a class of LHDs, called column expanded LHDs, which are nearly optimal under both the maximin <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-distance and orthogonality criteria. The advantage of the proposed method is that the resulting designs have flexible numbers of factors without computer search. Detailed comparisons with existing LHDs show that the constructed LHDs have larger minimum distances between design points and smaller correlation coefficients between distinct columns.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Column expanded Latin hypercube designs\",\"authors\":\"Qiao Wei,&nbsp;Jian-Feng Yang,&nbsp;Min-Qian Liu\",\"doi\":\"10.1016/j.jspi.2024.106208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maximin distance designs and orthogonal designs are extensively applied in computer experiments, but the construction of such designs is challenging, especially under the maximin distance criterion. In this paper, by adding columns to a fold-over optimal maximin <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-distance Latin hypercube design (LHD), we construct a class of LHDs, called column expanded LHDs, which are nearly optimal under both the maximin <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-distance and orthogonality criteria. The advantage of the proposed method is that the resulting designs have flexible numbers of factors without computer search. Detailed comparisons with existing LHDs show that the constructed LHDs have larger minimum distances between design points and smaller correlation coefficients between distinct columns.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037837582400065X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582400065X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最大距离设计和正交设计在计算机实验中得到了广泛应用,但这类设计的构建极具挑战性,尤其是在最大距离准则下。本文通过在折叠最优最大L2距离拉丁超立方设计(LHD)中添加列,构建了一类在最大L2距离准则和正交准则下都接近最优的LHD,称为列扩展LHD。所提方法的优势在于,设计结果具有灵活的因子数,无需计算机搜索。与现有 LHD 的详细比较表明,所构建的 LHD 设计点之间的最小距离更大,不同列之间的相关系数更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Column expanded Latin hypercube designs

Maximin distance designs and orthogonal designs are extensively applied in computer experiments, but the construction of such designs is challenging, especially under the maximin distance criterion. In this paper, by adding columns to a fold-over optimal maximin L2-distance Latin hypercube design (LHD), we construct a class of LHDs, called column expanded LHDs, which are nearly optimal under both the maximin L2-distance and orthogonality criteria. The advantage of the proposed method is that the resulting designs have flexible numbers of factors without computer search. Detailed comparisons with existing LHDs show that the constructed LHDs have larger minimum distances between design points and smaller correlation coefficients between distinct columns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信