对话系统的主题感知响应选择

Wei Yuan , Zongyang Ma , Aijun An , Jimmy Xiangji Huang
{"title":"对话系统的主题感知响应选择","authors":"Wei Yuan ,&nbsp;Zongyang Ma ,&nbsp;Aijun An ,&nbsp;Jimmy Xiangji Huang","doi":"10.1016/j.nlp.2024.100087","DOIUrl":null,"url":null,"abstract":"<div><p>It is challenging for a persona-based chitchat system to return responses consistent with the dialog context and the persona of the agent. This particularly holds for a retrieval-based chitchat system that selects the most appropriate response from a set of candidates according to the dialog context and the persona of the agent. A persona usually has some dominant topics (e.g., <em>sports</em>, <em>music</em>). Adhering to these topics can enhance the consistency of responses. However, previous studies rarely explore the topical semantics of the agent’s persona in the chitchat system, which often fails to return responses coherent with the persona. In this paper, we propose a Topic-Aware Response Selection (TARS) model, capturing multi-grained matching between the dialog context and a response and also between the persona and a response at both the word and the topic levels, to select the appropriate topic-aware response from the pool of response candidates. Empirical results on the public persona-based empathetic conversation (PEC) data demonstrate the promising performance of the TARS model for response selection.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"8 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000359/pdfft?md5=460e17e8ab71eeba6fb71be3795c94c0&pid=1-s2.0-S2949719124000359-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Topic-aware response selection for dialog systems\",\"authors\":\"Wei Yuan ,&nbsp;Zongyang Ma ,&nbsp;Aijun An ,&nbsp;Jimmy Xiangji Huang\",\"doi\":\"10.1016/j.nlp.2024.100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is challenging for a persona-based chitchat system to return responses consistent with the dialog context and the persona of the agent. This particularly holds for a retrieval-based chitchat system that selects the most appropriate response from a set of candidates according to the dialog context and the persona of the agent. A persona usually has some dominant topics (e.g., <em>sports</em>, <em>music</em>). Adhering to these topics can enhance the consistency of responses. However, previous studies rarely explore the topical semantics of the agent’s persona in the chitchat system, which often fails to return responses coherent with the persona. In this paper, we propose a Topic-Aware Response Selection (TARS) model, capturing multi-grained matching between the dialog context and a response and also between the persona and a response at both the word and the topic levels, to select the appropriate topic-aware response from the pool of response candidates. Empirical results on the public persona-based empathetic conversation (PEC) data demonstrate the promising performance of the TARS model for response selection.</p></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"8 \",\"pages\":\"Article 100087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000359/pdfft?md5=460e17e8ab71eeba6fb71be3795c94c0&pid=1-s2.0-S2949719124000359-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于基于角色的聊天系统来说,返回与对话语境和聊天者角色一致的回复是一项挑战。这对于基于检索的聊天系统来说尤其如此,因为该系统会根据对话语境和代理的角色从一组候选回复中选择最合适的回复。角色通常有一些主导话题(如体育、音乐)。遵循这些话题可以提高回复的一致性。然而,以往的研究很少探讨聊天系统中代理角色的主题语义,因此往往无法返回与角色一致的回复。在本文中,我们提出了话题感知回复选择(TARS)模型,该模型捕捉对话上下文与回复之间以及角色与回复之间在单词和话题层面的多粒度匹配,从而从候选回复库中选择合适的话题感知回复。基于公共角色的移情对话(PEC)数据的实证结果表明,TARS 模型在应答选择方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic-aware response selection for dialog systems

It is challenging for a persona-based chitchat system to return responses consistent with the dialog context and the persona of the agent. This particularly holds for a retrieval-based chitchat system that selects the most appropriate response from a set of candidates according to the dialog context and the persona of the agent. A persona usually has some dominant topics (e.g., sports, music). Adhering to these topics can enhance the consistency of responses. However, previous studies rarely explore the topical semantics of the agent’s persona in the chitchat system, which often fails to return responses coherent with the persona. In this paper, we propose a Topic-Aware Response Selection (TARS) model, capturing multi-grained matching between the dialog context and a response and also between the persona and a response at both the word and the topic levels, to select the appropriate topic-aware response from the pool of response candidates. Empirical results on the public persona-based empathetic conversation (PEC) data demonstrate the promising performance of the TARS model for response selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信