基于 Bootstrap 的线性混合效应统计推断(误设情况下

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Katarzyna Reluga , María-José Lombardía , Stefan Sperlich
{"title":"基于 Bootstrap 的线性混合效应统计推断(误设情况下","authors":"Katarzyna Reluga ,&nbsp;María-José Lombardía ,&nbsp;Stefan Sperlich","doi":"10.1016/j.csda.2024.108014","DOIUrl":null,"url":null,"abstract":"<div><p>Linear mixed effects are considered excellent predictors of cluster-level parameters in various domains. However, previous research has demonstrated that their performance is affected by departures from model assumptions. Given the common occurrence of these departures in empirical studies, there is a need for inferential methods that are robust to misspecifications while remaining accessible and appealing to practitioners. Statistical tools have been developed for cluster-wise and simultaneous inference for mixed effects under distributional misspecifications, employing a user-friendly semiparametric random effect bootstrap. The merits and limitations of this approach are discussed in the general context of model misspecification. Theoretical analysis demonstrates the asymptotic consistency of the methods under general regularity conditions. Simulations show that the proposed intervals are robust to departures from modelling assumptions, including asymmetry and long tails in the distributions of errors and random effects, outperforming competitors in terms of empirical coverage probability. Finally, the methodology is applied to construct confidence intervals for household income across counties in the Spanish region of Galicia.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000987/pdfft?md5=733458402da2cf31e9cef3842c8c4865&pid=1-s2.0-S0167947324000987-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bootstrap-based statistical inference for linear mixed effects under misspecifications\",\"authors\":\"Katarzyna Reluga ,&nbsp;María-José Lombardía ,&nbsp;Stefan Sperlich\",\"doi\":\"10.1016/j.csda.2024.108014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Linear mixed effects are considered excellent predictors of cluster-level parameters in various domains. However, previous research has demonstrated that their performance is affected by departures from model assumptions. Given the common occurrence of these departures in empirical studies, there is a need for inferential methods that are robust to misspecifications while remaining accessible and appealing to practitioners. Statistical tools have been developed for cluster-wise and simultaneous inference for mixed effects under distributional misspecifications, employing a user-friendly semiparametric random effect bootstrap. The merits and limitations of this approach are discussed in the general context of model misspecification. Theoretical analysis demonstrates the asymptotic consistency of the methods under general regularity conditions. Simulations show that the proposed intervals are robust to departures from modelling assumptions, including asymmetry and long tails in the distributions of errors and random effects, outperforming competitors in terms of empirical coverage probability. Finally, the methodology is applied to construct confidence intervals for household income across counties in the Spanish region of Galicia.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000987/pdfft?md5=733458402da2cf31e9cef3842c8c4865&pid=1-s2.0-S0167947324000987-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000987\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

线性混合效应被认为是各领域集群级参数的极佳预测工具。然而,以往的研究表明,它们的性能会受到偏离模型假设的影响。鉴于这些偏离情况在实证研究中经常出现,因此需要既能对错误假设保持稳健,又能为实践者所接受和青睐的推论方法。我们已经开发出了一些统计工具,利用方便用户的半参数随机效应自举法,对分布失当情况下的混合效应进行聚类和同步推断。该方法的优点和局限性在模型失当的一般情况下进行了讨论。理论分析表明,在一般正则条件下,这些方法具有渐近一致性。模拟表明,所提出的区间对偏离模型假设(包括误差和随机效应分布的不对称和长尾)具有鲁棒性,在经验覆盖概率方面优于竞争对手。最后,该方法被应用于构建西班牙加利西亚地区各县家庭收入的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap-based statistical inference for linear mixed effects under misspecifications

Linear mixed effects are considered excellent predictors of cluster-level parameters in various domains. However, previous research has demonstrated that their performance is affected by departures from model assumptions. Given the common occurrence of these departures in empirical studies, there is a need for inferential methods that are robust to misspecifications while remaining accessible and appealing to practitioners. Statistical tools have been developed for cluster-wise and simultaneous inference for mixed effects under distributional misspecifications, employing a user-friendly semiparametric random effect bootstrap. The merits and limitations of this approach are discussed in the general context of model misspecification. Theoretical analysis demonstrates the asymptotic consistency of the methods under general regularity conditions. Simulations show that the proposed intervals are robust to departures from modelling assumptions, including asymmetry and long tails in the distributions of errors and random effects, outperforming competitors in terms of empirical coverage probability. Finally, the methodology is applied to construct confidence intervals for household income across counties in the Spanish region of Galicia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信