无平均流情况下的平流边界定律:被动性、非互惠性和增强的噪声传输衰减

IF 4.3 2区 工程技术 Q1 ACOUSTICS
E. De Bono , M. Collet , M. Ouisse
{"title":"无平均流情况下的平流边界定律:被动性、非互惠性和增强的噪声传输衰减","authors":"E. De Bono ,&nbsp;M. Collet ,&nbsp;M. Ouisse","doi":"10.1016/j.jsv.2024.118603","DOIUrl":null,"url":null,"abstract":"<div><p>Sound attenuation along a waveguide is intensively studied for applications ranging from heating and air-conditioning ventilation systems, to aircraft turbofan engines. In particular, the new generation of Ultra-High-By-Pass-Ratio turbofan requires higher attenuation at low frequencies, in less space for liner treatment. This demands to go beyond the classical acoustic liner concepts and overcome their limitations. In this paper, we discuss an unconventional boundary operator, called Advection Boundary Law, which can be artificially synthesized by electroactive means, such as Electroacoustic Resonators. This boundary condition entails nonreciprocal propagation, meanwhile enhancing noise transmission attenuation with respect to purely locally-reacting boundaries, along one sense of propagation. Because of its artificial nature though, its acoustical passivity limits are yet to be defined. A thorough numerical study is provided to assess the performances of the Advection Boundary Law, in absence of mean flow. An experimental test-bench validates the numerical outcomes in terms of passivity limits, non-reciprocal propagation and enhanced isolation with respect to local impedance operators. Guidelines are outlined to properly implement the Advection Boundary Law for optimal noise transmission attenuation. Moreover, the tools and criteria provided here can also be employed for the design and characterization of other innovative liners.</p></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022460X24003663/pdfft?md5=c89cf557e2bdb020463d4a877535e787&pid=1-s2.0-S0022460X24003663-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Advection Boundary Law in absence of mean flow: Passivity, nonreciprocity and enhanced noise transmission attenuation\",\"authors\":\"E. De Bono ,&nbsp;M. Collet ,&nbsp;M. Ouisse\",\"doi\":\"10.1016/j.jsv.2024.118603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sound attenuation along a waveguide is intensively studied for applications ranging from heating and air-conditioning ventilation systems, to aircraft turbofan engines. In particular, the new generation of Ultra-High-By-Pass-Ratio turbofan requires higher attenuation at low frequencies, in less space for liner treatment. This demands to go beyond the classical acoustic liner concepts and overcome their limitations. In this paper, we discuss an unconventional boundary operator, called Advection Boundary Law, which can be artificially synthesized by electroactive means, such as Electroacoustic Resonators. This boundary condition entails nonreciprocal propagation, meanwhile enhancing noise transmission attenuation with respect to purely locally-reacting boundaries, along one sense of propagation. Because of its artificial nature though, its acoustical passivity limits are yet to be defined. A thorough numerical study is provided to assess the performances of the Advection Boundary Law, in absence of mean flow. An experimental test-bench validates the numerical outcomes in terms of passivity limits, non-reciprocal propagation and enhanced isolation with respect to local impedance operators. Guidelines are outlined to properly implement the Advection Boundary Law for optimal noise transmission attenuation. Moreover, the tools and criteria provided here can also be employed for the design and characterization of other innovative liners.</p></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24003663/pdfft?md5=c89cf557e2bdb020463d4a877535e787&pid=1-s2.0-S0022460X24003663-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24003663\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24003663","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

从供暖和空调通风系统到飞机涡轮风扇发动机,人们对波导的声音衰减进行了深入研究。特别是新一代超高通过率涡轮风扇要求在更小的衬垫处理空间内实现更高的低频衰减。这就要求超越传统的声学衬垫概念,克服其局限性。在本文中,我们讨论了一种称为 "平流边界法 "的非常规边界算子,它可以通过电活性手段(如电声谐振器)人工合成。这种边界条件需要非互惠传播,同时,相对于纯粹的局部反应边界,沿着一种传播方式增强了噪声传输衰减。不过,由于其人工性质,其声学钝化极限尚未确定。本文提供了一项全面的数值研究,以评估平流情况下平流边界法的性能。实验测试台验证了在钝化极限、非互惠传播和增强与局部阻抗算子隔离等方面的数值结果。此外,还概述了正确实施平流边界法以实现最佳噪声传输衰减的指导原则。此外,本文提供的工具和标准还可用于其他创新衬垫的设计和表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Advection Boundary Law in absence of mean flow: Passivity, nonreciprocity and enhanced noise transmission attenuation

Sound attenuation along a waveguide is intensively studied for applications ranging from heating and air-conditioning ventilation systems, to aircraft turbofan engines. In particular, the new generation of Ultra-High-By-Pass-Ratio turbofan requires higher attenuation at low frequencies, in less space for liner treatment. This demands to go beyond the classical acoustic liner concepts and overcome their limitations. In this paper, we discuss an unconventional boundary operator, called Advection Boundary Law, which can be artificially synthesized by electroactive means, such as Electroacoustic Resonators. This boundary condition entails nonreciprocal propagation, meanwhile enhancing noise transmission attenuation with respect to purely locally-reacting boundaries, along one sense of propagation. Because of its artificial nature though, its acoustical passivity limits are yet to be defined. A thorough numerical study is provided to assess the performances of the Advection Boundary Law, in absence of mean flow. An experimental test-bench validates the numerical outcomes in terms of passivity limits, non-reciprocal propagation and enhanced isolation with respect to local impedance operators. Guidelines are outlined to properly implement the Advection Boundary Law for optimal noise transmission attenuation. Moreover, the tools and criteria provided here can also be employed for the design and characterization of other innovative liners.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信