{"title":"搜索算术无穷递归以上的问题","authors":"Yudai Suzuki , Keita Yokoyama","doi":"10.1016/j.apal.2024.103488","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate some Weihrauch problems between <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></mrow></msub></math></span>. We show that the fixed point theorem for monotone operators on the Cantor space (a weaker version of the Knaster-Tarski theorem) is not Weihrauch reducible to <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Furthermore, we introduce the <em>ω</em>-model reflection <span><math><msubsup><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>rfn</mi></mrow></msubsup></math></span> of <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and show that it is an upper bound for problems provable from the axiomatic system <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> which are of the form <span><math><mo>∀</mo><mi>X</mi><mo>(</mo><mi>θ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><mo>∃</mo><mi>Y</mi><mi>η</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo><mo>)</mo></math></span> with arithmetical formulas <span><math><mi>θ</mi><mo>,</mo><mi>η</mi></math></span>. We also show that Weihrauch degrees of relativized least fixed point theorems for monotone operators on the Cantor space form a linear hierarchy between <span><math><msubsup><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>rfn</mi></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></mrow></msub></math></span>.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 10","pages":"Article 103488"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching problems above arithmetical transfinite recursion\",\"authors\":\"Yudai Suzuki , Keita Yokoyama\",\"doi\":\"10.1016/j.apal.2024.103488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate some Weihrauch problems between <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></mrow></msub></math></span>. We show that the fixed point theorem for monotone operators on the Cantor space (a weaker version of the Knaster-Tarski theorem) is not Weihrauch reducible to <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Furthermore, we introduce the <em>ω</em>-model reflection <span><math><msubsup><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>rfn</mi></mrow></msubsup></math></span> of <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and show that it is an upper bound for problems provable from the axiomatic system <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> which are of the form <span><math><mo>∀</mo><mi>X</mi><mo>(</mo><mi>θ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><mo>∃</mo><mi>Y</mi><mi>η</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo><mo>)</mo></math></span> with arithmetical formulas <span><math><mi>θ</mi><mo>,</mo><mi>η</mi></math></span>. We also show that Weihrauch degrees of relativized least fixed point theorems for monotone operators on the Cantor space form a linear hierarchy between <span><math><msubsup><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>rfn</mi></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 10\",\"pages\":\"Article 103488\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224000927\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
We investigate some Weihrauch problems between and . We show that the fixed point theorem for monotone operators on the Cantor space (a weaker version of the Knaster-Tarski theorem) is not Weihrauch reducible to . Furthermore, we introduce the ω-model reflection of and show that it is an upper bound for problems provable from the axiomatic system which are of the form with arithmetical formulas . We also show that Weihrauch degrees of relativized least fixed point theorems for monotone operators on the Cantor space form a linear hierarchy between and .
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.