搜索算术无穷递归以上的问题

Pub Date : 2024-06-19 DOI:10.1016/j.apal.2024.103488
Yudai Suzuki , Keita Yokoyama
{"title":"搜索算术无穷递归以上的问题","authors":"Yudai Suzuki ,&nbsp;Keita Yokoyama","doi":"10.1016/j.apal.2024.103488","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate some Weihrauch problems between <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></mrow></msub></math></span>. We show that the fixed point theorem for monotone operators on the Cantor space (a weaker version of the Knaster-Tarski theorem) is not Weihrauch reducible to <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Furthermore, we introduce the <em>ω</em>-model reflection <span><math><msubsup><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>rfn</mi></mrow></msubsup></math></span> of <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and show that it is an upper bound for problems provable from the axiomatic system <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> which are of the form <span><math><mo>∀</mo><mi>X</mi><mo>(</mo><mi>θ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><mo>∃</mo><mi>Y</mi><mi>η</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo><mo>)</mo></math></span> with arithmetical formulas <span><math><mi>θ</mi><mo>,</mo><mi>η</mi></math></span>. We also show that Weihrauch degrees of relativized least fixed point theorems for monotone operators on the Cantor space form a linear hierarchy between <span><math><msubsup><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>rfn</mi></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></mrow></msub></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching problems above arithmetical transfinite recursion\",\"authors\":\"Yudai Suzuki ,&nbsp;Keita Yokoyama\",\"doi\":\"10.1016/j.apal.2024.103488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate some Weihrauch problems between <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></mrow></msub></math></span>. We show that the fixed point theorem for monotone operators on the Cantor space (a weaker version of the Knaster-Tarski theorem) is not Weihrauch reducible to <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Furthermore, we introduce the <em>ω</em>-model reflection <span><math><msubsup><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>rfn</mi></mrow></msubsup></math></span> of <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and show that it is an upper bound for problems provable from the axiomatic system <span><math><msub><mrow><mi>ATR</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> which are of the form <span><math><mo>∀</mo><mi>X</mi><mo>(</mo><mi>θ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><mo>∃</mo><mi>Y</mi><mi>η</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo><mo>)</mo></math></span> with arithmetical formulas <span><math><mi>θ</mi><mo>,</mo><mi>η</mi></math></span>. We also show that Weihrauch degrees of relativized least fixed point theorems for monotone operators on the Cantor space form a linear hierarchy between <span><math><msubsup><mrow><mi>ATR</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>rfn</mi></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224000927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 ATR2 与 Cωω 之间的一些韦氏问题。我们证明了康托尔空间上单调算子的定点定理(克纳斯特-塔尔斯基定理的弱化版)与 ATR2 之间不存在 Weihrauch 还原性。此外,我们还引入了 ATR2 的 ω 模型反映 ATR2rfn,并证明它是公理系统 ATR0 中可证明问题的上界,这些问题的形式为 ∀X(θ(X)→∃Yη(X,Y)) 带算术公式 θ,η。我们还证明,康托尔空间上单调算子的相对化最小定点定理的韦氏度在 ATR2rfn 和 Cωω 之间形成线性层次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Searching problems above arithmetical transfinite recursion

We investigate some Weihrauch problems between ATR2 and Cωω. We show that the fixed point theorem for monotone operators on the Cantor space (a weaker version of the Knaster-Tarski theorem) is not Weihrauch reducible to ATR2. Furthermore, we introduce the ω-model reflection ATR2rfn of ATR2 and show that it is an upper bound for problems provable from the axiomatic system ATR0 which are of the form X(θ(X)Yη(X,Y)) with arithmetical formulas θ,η. We also show that Weihrauch degrees of relativized least fixed point theorems for monotone operators on the Cantor space form a linear hierarchy between ATR2rfn and Cωω.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信