Florian Pöppl , Andreas Ullrich , Gottfried Mandlburger , Norbert Pfeifer
{"title":"运动学激光扫描的灵活轨迹估计方法","authors":"Florian Pöppl , Andreas Ullrich , Gottfried Mandlburger , Norbert Pfeifer","doi":"10.1016/j.isprsjprs.2024.06.014","DOIUrl":null,"url":null,"abstract":"<div><p>Kinematic laser scanning is a widely-used surveying technique based on light detection and ranging (LiDAR) that enables efficient data acquisition by mounting the laser scanner on a moving platform. In order to obtain a georeferenced point cloud, the trajectory of the moving platform must be accurately known. To this end, most commercial laser scanning systems comprise an inertial measurement unit (IMU) and a global navigation satellite system (GNSS) receiver and antenna. Trajectory estimation is then the task of determining the platform’s position and orientation by integrating measurements from the IMU, GNSS, and possibly the laser scanner itself. Here, we present a comprehensive approach to trajectory estimation for kinematic laser scanning, based on batch least-squares adjustment incorporating pre-processed GNSS positions, raw IMU data and plane-based LiDAR correspondences in a single estimation procedure. In comparison to the classic workflow of Kalman filtering followed by strip adjustment, this is a holistic approach with tight coupling of IMU and LiDAR. For the latter, we extend the data-derived stochastic model for the LiDAR plane observations with prior knowledge of the LiDAR measurement process. The proposed trajectory estimation approach is flexible and allows different system configurations as well as joint registration of multiple independent kinematic datasets. This is demonstrated using as a practical example a combined dataset consisting of two independent data acquisitions from crewed aircraft and uncrewed aerial vehicle. All measurements from both datasets are jointly adjusted in order to obtain a single high-quality point cloud, without the need for ground control. The performance of this approach is evaluated in terms of point cloud consistency, precision, and accuracy. The latter is done by comparison to terrestrially surveyed reference data on the ground. The results show improved consistency, accuracy, and precision compared to a standard workflow, with the RMSE reduced from 7.43<!--> <!-->cm to 3.85<!--> <!-->cm w.r.t. the reference data surfaces, and the point-to-plane standard deviation on the surfaces reduced from 3.01<!--> <!-->cm to 2.44<!--> <!-->cm. Although a direct comparison to the state-of-the-art can only be made with caution, we can state that the suggested method performs better in terms of point cloud consistency and precision, while at the same time achieving better absolute accuracy.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924271624002521/pdfft?md5=2a19ef97db3b9dfcefeb96e38f66d8b7&pid=1-s2.0-S0924271624002521-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A flexible trajectory estimation methodology for kinematic laser scanning\",\"authors\":\"Florian Pöppl , Andreas Ullrich , Gottfried Mandlburger , Norbert Pfeifer\",\"doi\":\"10.1016/j.isprsjprs.2024.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kinematic laser scanning is a widely-used surveying technique based on light detection and ranging (LiDAR) that enables efficient data acquisition by mounting the laser scanner on a moving platform. In order to obtain a georeferenced point cloud, the trajectory of the moving platform must be accurately known. To this end, most commercial laser scanning systems comprise an inertial measurement unit (IMU) and a global navigation satellite system (GNSS) receiver and antenna. Trajectory estimation is then the task of determining the platform’s position and orientation by integrating measurements from the IMU, GNSS, and possibly the laser scanner itself. Here, we present a comprehensive approach to trajectory estimation for kinematic laser scanning, based on batch least-squares adjustment incorporating pre-processed GNSS positions, raw IMU data and plane-based LiDAR correspondences in a single estimation procedure. In comparison to the classic workflow of Kalman filtering followed by strip adjustment, this is a holistic approach with tight coupling of IMU and LiDAR. For the latter, we extend the data-derived stochastic model for the LiDAR plane observations with prior knowledge of the LiDAR measurement process. The proposed trajectory estimation approach is flexible and allows different system configurations as well as joint registration of multiple independent kinematic datasets. This is demonstrated using as a practical example a combined dataset consisting of two independent data acquisitions from crewed aircraft and uncrewed aerial vehicle. All measurements from both datasets are jointly adjusted in order to obtain a single high-quality point cloud, without the need for ground control. The performance of this approach is evaluated in terms of point cloud consistency, precision, and accuracy. The latter is done by comparison to terrestrially surveyed reference data on the ground. The results show improved consistency, accuracy, and precision compared to a standard workflow, with the RMSE reduced from 7.43<!--> <!-->cm to 3.85<!--> <!-->cm w.r.t. the reference data surfaces, and the point-to-plane standard deviation on the surfaces reduced from 3.01<!--> <!-->cm to 2.44<!--> <!-->cm. Although a direct comparison to the state-of-the-art can only be made with caution, we can state that the suggested method performs better in terms of point cloud consistency and precision, while at the same time achieving better absolute accuracy.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0924271624002521/pdfft?md5=2a19ef97db3b9dfcefeb96e38f66d8b7&pid=1-s2.0-S0924271624002521-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624002521\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624002521","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A flexible trajectory estimation methodology for kinematic laser scanning
Kinematic laser scanning is a widely-used surveying technique based on light detection and ranging (LiDAR) that enables efficient data acquisition by mounting the laser scanner on a moving platform. In order to obtain a georeferenced point cloud, the trajectory of the moving platform must be accurately known. To this end, most commercial laser scanning systems comprise an inertial measurement unit (IMU) and a global navigation satellite system (GNSS) receiver and antenna. Trajectory estimation is then the task of determining the platform’s position and orientation by integrating measurements from the IMU, GNSS, and possibly the laser scanner itself. Here, we present a comprehensive approach to trajectory estimation for kinematic laser scanning, based on batch least-squares adjustment incorporating pre-processed GNSS positions, raw IMU data and plane-based LiDAR correspondences in a single estimation procedure. In comparison to the classic workflow of Kalman filtering followed by strip adjustment, this is a holistic approach with tight coupling of IMU and LiDAR. For the latter, we extend the data-derived stochastic model for the LiDAR plane observations with prior knowledge of the LiDAR measurement process. The proposed trajectory estimation approach is flexible and allows different system configurations as well as joint registration of multiple independent kinematic datasets. This is demonstrated using as a practical example a combined dataset consisting of two independent data acquisitions from crewed aircraft and uncrewed aerial vehicle. All measurements from both datasets are jointly adjusted in order to obtain a single high-quality point cloud, without the need for ground control. The performance of this approach is evaluated in terms of point cloud consistency, precision, and accuracy. The latter is done by comparison to terrestrially surveyed reference data on the ground. The results show improved consistency, accuracy, and precision compared to a standard workflow, with the RMSE reduced from 7.43 cm to 3.85 cm w.r.t. the reference data surfaces, and the point-to-plane standard deviation on the surfaces reduced from 3.01 cm to 2.44 cm. Although a direct comparison to the state-of-the-art can only be made with caution, we can state that the suggested method performs better in terms of point cloud consistency and precision, while at the same time achieving better absolute accuracy.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.