采用不同面层类型的 MSE 墙体性能离心模型试验

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Ting Li , Yi Zhong , Peng Xu , Guangqing Yang , Guanlu Jiang
{"title":"采用不同面层类型的 MSE 墙体性能离心模型试验","authors":"Ting Li ,&nbsp;Yi Zhong ,&nbsp;Peng Xu ,&nbsp;Guangqing Yang ,&nbsp;Guanlu Jiang","doi":"10.1016/j.geotexmem.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>The role of wall facing is crucial in the design of MSE walls. This study employed two centrifuge model tests specifically designed to analyze walls with two distinct facing types: full-height panel facing and modular block facing. Additionally, surcharge loads were applied to these MSE walls to simulate real-world conditions. The findings from these tests revealed that MSE walls with full-height panel facing exhibited superior performance under the combined effects of self-weight and surcharge loads. The measured maximum horizontal displacements in walls with full-height panel facing and modular block facing were about 55% and 85% of those predicted from current design guidelines at EOS3, respectively. The influence of the surcharge loads on the reinforcement loads was found to be substantial for both wall types, especially for the case of model wall with modular block facing, where the reinforcement loads in the upper half of the wall increased by about 30% from EOS2 to EOS3. The insights garnered from this study contribute to a deeper and more nuanced understanding of the impact of facing types on the practical construction and design of MSE walls, offering valuable guidance for future engineering applications.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 1045-1053"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centrifuge model tests on performance of MSE walls with different facing types\",\"authors\":\"Ting Li ,&nbsp;Yi Zhong ,&nbsp;Peng Xu ,&nbsp;Guangqing Yang ,&nbsp;Guanlu Jiang\",\"doi\":\"10.1016/j.geotexmem.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of wall facing is crucial in the design of MSE walls. This study employed two centrifuge model tests specifically designed to analyze walls with two distinct facing types: full-height panel facing and modular block facing. Additionally, surcharge loads were applied to these MSE walls to simulate real-world conditions. The findings from these tests revealed that MSE walls with full-height panel facing exhibited superior performance under the combined effects of self-weight and surcharge loads. The measured maximum horizontal displacements in walls with full-height panel facing and modular block facing were about 55% and 85% of those predicted from current design guidelines at EOS3, respectively. The influence of the surcharge loads on the reinforcement loads was found to be substantial for both wall types, especially for the case of model wall with modular block facing, where the reinforcement loads in the upper half of the wall increased by about 30% from EOS2 to EOS3. The insights garnered from this study contribute to a deeper and more nuanced understanding of the impact of facing types on the practical construction and design of MSE walls, offering valuable guidance for future engineering applications.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"52 5\",\"pages\":\"Pages 1045-1053\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424000669\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000669","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

墙面的作用对 MSE 墙的设计至关重要。本研究采用了两个离心机模型试验,专门用于分析具有两种不同墙面类型的墙体:全高面板墙面和模块砌块墙面。此外,还在这些 MSE 墙体上施加了附加荷载,以模拟实际情况。这些测试结果表明,在自重和附加荷载的共同作用下,采用全高面板墙体的 MSE 墙体表现出卓越的性能。全高面板墙和模块砌块墙的实测最大水平位移分别约为 EOS3 现行设计准则预测值的 55% 和 85%。研究发现,附加荷载对两种墙体类型的加固荷载都有很大的影响,尤其是在采用模块砌块面层的模型墙体中,从 EOS2 到 EOS3,墙体上半部分的加固荷载增加了约 30%。本研究获得的见解有助于更深入、更细致地了解面层类型对 MSE 墙体实际施工和设计的影响,为未来的工程应用提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centrifuge model tests on performance of MSE walls with different facing types

The role of wall facing is crucial in the design of MSE walls. This study employed two centrifuge model tests specifically designed to analyze walls with two distinct facing types: full-height panel facing and modular block facing. Additionally, surcharge loads were applied to these MSE walls to simulate real-world conditions. The findings from these tests revealed that MSE walls with full-height panel facing exhibited superior performance under the combined effects of self-weight and surcharge loads. The measured maximum horizontal displacements in walls with full-height panel facing and modular block facing were about 55% and 85% of those predicted from current design guidelines at EOS3, respectively. The influence of the surcharge loads on the reinforcement loads was found to be substantial for both wall types, especially for the case of model wall with modular block facing, where the reinforcement loads in the upper half of the wall increased by about 30% from EOS2 to EOS3. The insights garnered from this study contribute to a deeper and more nuanced understanding of the impact of facing types on the practical construction and design of MSE walls, offering valuable guidance for future engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信