Noora Lind, Atte Aho, Kari Eränen, Pasi Virtanen, Irina Simakova, Päivi Mäki-Arvela, Dmitry Yu. Murzin
{"title":"在 Rh-MnOx/SiO2、Rh-Co/ZrO2 和 Rh-Cu/ZrO2 催化剂上将合成气转化为有价值的含氧产品","authors":"Noora Lind, Atte Aho, Kari Eränen, Pasi Virtanen, Irina Simakova, Päivi Mäki-Arvela, Dmitry Yu. Murzin","doi":"10.1016/j.apcata.2024.119852","DOIUrl":null,"url":null,"abstract":"<div><p>The conversion of syngas into higher alcohols was examined using bimetallic Rh-Co, Rh-Cu, and multimetallic RhCuPd catalysts, all of which were supported on ZrO<sub>2</sub>. This process was also studied using a MnOx-promoted Rh/SiO<sub>2</sub> catalyst. These experiments were conducted within a temperature range of 225–300 °C, under a pressure of 30 bar, and with a H<sub>2</sub>/CO ratio of 2. The catalysts were characterized using a variety of physicochemical methods, including Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Carbon Monoxide Diffuse Reflectance Infrared Fourier Transform Spectroscopy (CO DRIFTS). The Rh particle sizes in the fresh catalysts were found to be less than 3 nm. The Rh-Co catalyst supported on ZrO<sub>2</sub> exhibited the highest selectivity to ethanol, achieving 38 % at a CO conversion rate of 58 % at 275 °C. This catalyst also demonstrated a chain growth probability of 0.35 for alcohols. A slightly higher chain growth probability was observed with the Rh-MnOx/SiO<sub>2</sub> catalyst, although this also resulted in the formation of substantial amounts of acetic acid. Interestingly, this acetic acid could be converted into ketones when RhMnOx was used in conjunction with Pd/ZrO<sub>2</sub>.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926860X24002977/pdfft?md5=20526dd6c5ee211633ddaac9482f2cd1&pid=1-s2.0-S0926860X24002977-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Transformation of syngas to valuable oxygenated products over Rh-MnOx/SiO2, Rh-Co/ZrO2 and Rh-Cu/ZrO2 catalysts\",\"authors\":\"Noora Lind, Atte Aho, Kari Eränen, Pasi Virtanen, Irina Simakova, Päivi Mäki-Arvela, Dmitry Yu. Murzin\",\"doi\":\"10.1016/j.apcata.2024.119852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conversion of syngas into higher alcohols was examined using bimetallic Rh-Co, Rh-Cu, and multimetallic RhCuPd catalysts, all of which were supported on ZrO<sub>2</sub>. This process was also studied using a MnOx-promoted Rh/SiO<sub>2</sub> catalyst. These experiments were conducted within a temperature range of 225–300 °C, under a pressure of 30 bar, and with a H<sub>2</sub>/CO ratio of 2. The catalysts were characterized using a variety of physicochemical methods, including Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Carbon Monoxide Diffuse Reflectance Infrared Fourier Transform Spectroscopy (CO DRIFTS). The Rh particle sizes in the fresh catalysts were found to be less than 3 nm. The Rh-Co catalyst supported on ZrO<sub>2</sub> exhibited the highest selectivity to ethanol, achieving 38 % at a CO conversion rate of 58 % at 275 °C. This catalyst also demonstrated a chain growth probability of 0.35 for alcohols. A slightly higher chain growth probability was observed with the Rh-MnOx/SiO<sub>2</sub> catalyst, although this also resulted in the formation of substantial amounts of acetic acid. Interestingly, this acetic acid could be converted into ketones when RhMnOx was used in conjunction with Pd/ZrO<sub>2</sub>.</p></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0926860X24002977/pdfft?md5=20526dd6c5ee211633ddaac9482f2cd1&pid=1-s2.0-S0926860X24002977-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X24002977\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24002977","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Transformation of syngas to valuable oxygenated products over Rh-MnOx/SiO2, Rh-Co/ZrO2 and Rh-Cu/ZrO2 catalysts
The conversion of syngas into higher alcohols was examined using bimetallic Rh-Co, Rh-Cu, and multimetallic RhCuPd catalysts, all of which were supported on ZrO2. This process was also studied using a MnOx-promoted Rh/SiO2 catalyst. These experiments were conducted within a temperature range of 225–300 °C, under a pressure of 30 bar, and with a H2/CO ratio of 2. The catalysts were characterized using a variety of physicochemical methods, including Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Carbon Monoxide Diffuse Reflectance Infrared Fourier Transform Spectroscopy (CO DRIFTS). The Rh particle sizes in the fresh catalysts were found to be less than 3 nm. The Rh-Co catalyst supported on ZrO2 exhibited the highest selectivity to ethanol, achieving 38 % at a CO conversion rate of 58 % at 275 °C. This catalyst also demonstrated a chain growth probability of 0.35 for alcohols. A slightly higher chain growth probability was observed with the Rh-MnOx/SiO2 catalyst, although this also resulted in the formation of substantial amounts of acetic acid. Interestingly, this acetic acid could be converted into ketones when RhMnOx was used in conjunction with Pd/ZrO2.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.